临床个体化治疗癌症的技术进展:从基因到整个生物体。

Personalized medicine Pub Date : 2025-02-01 Epub Date: 2025-01-07 DOI:10.1080/17410541.2024.2447224
Jiejing Kai, Xueling Liu, Meijia Wu, Pan Liu, Meihua Lin, Hongyu Yang, Qingwei Zhao
{"title":"临床个体化治疗癌症的技术进展:从基因到整个生物体。","authors":"Jiejing Kai, Xueling Liu, Meijia Wu, Pan Liu, Meihua Lin, Hongyu Yang, Qingwei Zhao","doi":"10.1080/17410541.2024.2447224","DOIUrl":null,"url":null,"abstract":"<p><p>Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made \"individualized treatment\" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.</p>","PeriodicalId":94167,"journal":{"name":"Personalized medicine","volume":" ","pages":"45-58"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.\",\"authors\":\"Jiejing Kai, Xueling Liu, Meijia Wu, Pan Liu, Meihua Lin, Hongyu Yang, Qingwei Zhao\",\"doi\":\"10.1080/17410541.2024.2447224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made \\\"individualized treatment\\\" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.</p>\",\"PeriodicalId\":94167,\"journal\":{\"name\":\"Personalized medicine\",\"volume\":\" \",\"pages\":\"45-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17410541.2024.2447224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17410541.2024.2447224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们一直在努力利用技术来准确识别肿瘤特征,并预测每个癌症患者对药物的反应。这包括从各种来源收集数据,如基因组数据、组织学信息、功能药物谱和药物代谢,使用聚合酶链反应、桑格测序、下一代测序、荧光原位杂交、免疫组织化学染色、患者来源的肿瘤异种移植模型、患者来源的类器官模型和治疗药物监测等技术。临床实践中多种检测技术的应用使“个体化治疗”成为可能,但所需的准确性尚未完全达到。在这里,我们简要地总结了在临床环境中有助于个体化治疗的传统和最先进的技术,旨在探索提高临床结果的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信