Kristina Michl, Makoto Kanasugi, Alena Förster, Regina Wuggenig, Sulemana Issifu, Katarzyna Hrynkiewicz, Christoph Emmerling, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava
{"title":"多年生谷物与一年生冬小麦的微生物组只在根内球层不同。","authors":"Kristina Michl, Makoto Kanasugi, Alena Förster, Regina Wuggenig, Sulemana Issifu, Katarzyna Hrynkiewicz, Christoph Emmerling, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava","doi":"10.1093/ismeco/ycae165","DOIUrl":null,"url":null,"abstract":"<p><p>The intensification of agriculture has led to environmental degradation, including the loss of biodiversity. This has prompted interest in perennial grain cropping systems to address and mitigate some of these negative impacts. In order to determine if perennial grain cultivation promotes a higher microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate wheatgrass, <i>Thinopyrum intermedium</i> L.) in comparison to its annual counterpart, wheat (<i>Triticum aestivum</i> L.). The study covered three sampling sites in a pan-European gradient (Sweden, Belgium, and France), two plant genotypes, three plant compartments (roots, stems, and leaves), and two sampling time points. We observed that the host genotype effect was mainly evident in the belowground compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three sampling sites. Moreover, intermediate wheatgrass roots harbored a different bacterial community composition and higher diversity and richness compared to their annual counterparts. The root bacterial diversity was influenced by not only several soil chemical parameters, such as the carbon:nitrogen ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. Consistent findings across time and space suggest stable mechanisms in microbiota assembly associated with perennial grain cropping, underscoring their potential role in supporting biodiversity within sustainable agricultural systems.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycae165"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812607/pdf/","citationCount":"0","resultStr":"{\"title\":\"The microbiome of a perennial cereal differs from annual winter wheat only in the root endosphere.\",\"authors\":\"Kristina Michl, Makoto Kanasugi, Alena Förster, Regina Wuggenig, Sulemana Issifu, Katarzyna Hrynkiewicz, Christoph Emmerling, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava\",\"doi\":\"10.1093/ismeco/ycae165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intensification of agriculture has led to environmental degradation, including the loss of biodiversity. This has prompted interest in perennial grain cropping systems to address and mitigate some of these negative impacts. In order to determine if perennial grain cultivation promotes a higher microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate wheatgrass, <i>Thinopyrum intermedium</i> L.) in comparison to its annual counterpart, wheat (<i>Triticum aestivum</i> L.). The study covered three sampling sites in a pan-European gradient (Sweden, Belgium, and France), two plant genotypes, three plant compartments (roots, stems, and leaves), and two sampling time points. We observed that the host genotype effect was mainly evident in the belowground compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three sampling sites. Moreover, intermediate wheatgrass roots harbored a different bacterial community composition and higher diversity and richness compared to their annual counterparts. The root bacterial diversity was influenced by not only several soil chemical parameters, such as the carbon:nitrogen ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. Consistent findings across time and space suggest stable mechanisms in microbiota assembly associated with perennial grain cropping, underscoring their potential role in supporting biodiversity within sustainable agricultural systems.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycae165\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
The microbiome of a perennial cereal differs from annual winter wheat only in the root endosphere.
The intensification of agriculture has led to environmental degradation, including the loss of biodiversity. This has prompted interest in perennial grain cropping systems to address and mitigate some of these negative impacts. In order to determine if perennial grain cultivation promotes a higher microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate wheatgrass, Thinopyrum intermedium L.) in comparison to its annual counterpart, wheat (Triticum aestivum L.). The study covered three sampling sites in a pan-European gradient (Sweden, Belgium, and France), two plant genotypes, three plant compartments (roots, stems, and leaves), and two sampling time points. We observed that the host genotype effect was mainly evident in the belowground compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three sampling sites. Moreover, intermediate wheatgrass roots harbored a different bacterial community composition and higher diversity and richness compared to their annual counterparts. The root bacterial diversity was influenced by not only several soil chemical parameters, such as the carbon:nitrogen ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. Consistent findings across time and space suggest stable mechanisms in microbiota assembly associated with perennial grain cropping, underscoring their potential role in supporting biodiversity within sustainable agricultural systems.