肥胖患者认知功能改变:与肠道菌群的关系。

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-06-01 Epub Date: 2025-02-12 DOI:10.1007/s11010-024-05201-y
Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu
{"title":"肥胖患者认知功能改变:与肠道菌群的关系。","authors":"Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu","doi":"10.1007/s11010-024-05201-y","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3553-3567"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Altered cognitive function in obese patients: relationship to gut flora.\",\"authors\":\"Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu\",\"doi\":\"10.1007/s11010-024-05201-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3553-3567\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05201-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05201-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥胖是心血管疾病和糖尿病等非传染性疾病的一个风险因素,这些疾病是导致死亡和残疾的主要原因。如今,中国是超重和肥胖人口最多的国家,这给中国的医疗体系带来了沉重的负担。肥胖对中枢神经系统(CNS)产生不利影响,尤其是认知功能,如执行力、工作记忆、学习等。随着成人肥胖率的逐渐上升,儿童肥胖率也在上升。在过去的二十年中,五岁以下儿童的肥胖率从3200万增加到4200万。如果儿童肥胖在早期不加以干预,它将持续到成年并终生存在。在潜在的致病因素中,早期生活方式可能会影响儿童肥胖肠道菌群的组成,如高能量食物的摄入和摄入,低水平的身体活动,可能会持续到成年,因此,早期生活方式干预可能会改善肥胖儿童肠道菌群的组成。脂肪轴在肥胖的发展中起着重要的作用。脂肪组织的特征是核苷二磷酸连接分子x型基序2 (NUDT2)、两亲性蛋白AMPH基因的表达增加,这些基因编码在中枢神经系统中发挥重要作用的蛋白质。NUDT2与智力残疾有关。此外,amphiphysin (AMPH)参与谷氨酸能信号传导、神经节突触发育和成熟,这与轻度认知障碍(MCI)和阿尔茨海默病(AD)有关。以上研究均表明肥胖与患者认知能力下降密切相关。动物实验证实,肥胖会导致认知功能的改变。例如,富含长链和中链饱和脂肪酸的高脂肪饮食可能会对肥胖小鼠的认知功能产生不利影响。这一过程可能是由于富含短链脂肪酸(SCFA)的高脂饮食(HFD)激活肠细胞TLR信号,特别是TLR-2和TLR-4,改变下游MyD88-4信号,从而影响下游MyD88-NF-κB信号级联,上调促炎因子和脂多糖(LPS)水平。这些变化导致肠粘膜完整性的丧失,并引起内环境的不平衡。肥胖可能导致肠道菌群紊乱,破坏肠道屏障功能,引起肠道菌群失调。近年来,越来越多的研究探讨了肥胖与肠道菌群之间的关系。例如,研究发现,高脂肪和高糖饮食会导致小鼠结肠黏液层变薄,紧密连接蛋白数量减少,肠道通透性增加。这些变化改变了肠道微生物的组成,使内毒素进入血液循环,并诱发神经炎症和脑损伤。因此,肥胖会影响认知功能,甚至具有遗传性。本文就肥胖引起的认知功能障碍、机制、肥胖患者肠道菌群失调的研究进展、肠道菌群与认知功能改变的关系以及肥胖患者肠道菌群失调的研究进展进行综述。我们希望从肠道菌群的角度调节肥胖患者的内环境,改善肥胖患者的认知功能,预防肥胖引起的相关神经功能的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Altered cognitive function in obese patients: relationship to gut flora.

Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信