地膜覆盖种植区中药根茎中微塑料与重金属的共存特征

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Cong Xiao, Jiabin Zhou, Wen Xiong, Xiaochuan Ye
{"title":"地膜覆盖种植区中药根茎中微塑料与重金属的共存特征","authors":"Cong Xiao, Jiabin Zhou, Wen Xiong, Xiaochuan Ye","doi":"10.1007/s10653-025-02393-0","DOIUrl":null,"url":null,"abstract":"<p><p>Rhizomatous traditional Chinese medicines (RTCMs) are widely crushed into powder and swallowed directly as medicine and food or health products to treat various diseases; however, they may contain toxic microplastics (MPs) and heavy metals. Currently, there are no reports on the detection of MPs and MP-heavy metal synergies in RTCMs. In this study, we selected eight representative RTCMs to investigate the abundance, types, sizes, and polymers of MP and heavy metals and to assess the level of contamination of MPs and synergies between MPs and heavy metals in RTCMs. The abundance of MPs in different RTCM ranged from 20.83 to 43.65 items/g. The dominant type was fragment (95.43%), and the dominant particle size was < 0.5 mm (73.72%) in MPs. Polyurethane (PU) (29.21%) and acrylics (ACR 13.53%) were the dominant polymers of MP. MP polymers showed obvious correlations with type and particle size: PU was enriched in 0-50-mm and 100-300-mm fragments, whereas ethylene vinyl acetate and ACR were enriched in 0-30-mm fibers. The heavy metals arsenic (As), lead (Pb), and chromium (Cr) were found to be more susceptible to synergistic contamination with MPs in RTCMs compared to other heavy metals. The estimated daily intake (EDI) of the MPs and heavy metals for RG (Rehmannia glutinosa) and RAY (Rhizoma atractylodis) were higher than others. The results showed that MP pollution is common in RTCMs and carries the potential risk of heavy metal or MP poisoning in humans who consume RTCMs.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"74"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The coexistence characteristics of microplastics and heavy metals in rhizomes of traditional Chinese medicine in mulch planting area.\",\"authors\":\"Cong Xiao, Jiabin Zhou, Wen Xiong, Xiaochuan Ye\",\"doi\":\"10.1007/s10653-025-02393-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhizomatous traditional Chinese medicines (RTCMs) are widely crushed into powder and swallowed directly as medicine and food or health products to treat various diseases; however, they may contain toxic microplastics (MPs) and heavy metals. Currently, there are no reports on the detection of MPs and MP-heavy metal synergies in RTCMs. In this study, we selected eight representative RTCMs to investigate the abundance, types, sizes, and polymers of MP and heavy metals and to assess the level of contamination of MPs and synergies between MPs and heavy metals in RTCMs. The abundance of MPs in different RTCM ranged from 20.83 to 43.65 items/g. The dominant type was fragment (95.43%), and the dominant particle size was < 0.5 mm (73.72%) in MPs. Polyurethane (PU) (29.21%) and acrylics (ACR 13.53%) were the dominant polymers of MP. MP polymers showed obvious correlations with type and particle size: PU was enriched in 0-50-mm and 100-300-mm fragments, whereas ethylene vinyl acetate and ACR were enriched in 0-30-mm fibers. The heavy metals arsenic (As), lead (Pb), and chromium (Cr) were found to be more susceptible to synergistic contamination with MPs in RTCMs compared to other heavy metals. The estimated daily intake (EDI) of the MPs and heavy metals for RG (Rehmannia glutinosa) and RAY (Rhizoma atractylodis) were higher than others. The results showed that MP pollution is common in RTCMs and carries the potential risk of heavy metal or MP poisoning in humans who consume RTCMs.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 3\",\"pages\":\"74\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02393-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02393-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The coexistence characteristics of microplastics and heavy metals in rhizomes of traditional Chinese medicine in mulch planting area.

Rhizomatous traditional Chinese medicines (RTCMs) are widely crushed into powder and swallowed directly as medicine and food or health products to treat various diseases; however, they may contain toxic microplastics (MPs) and heavy metals. Currently, there are no reports on the detection of MPs and MP-heavy metal synergies in RTCMs. In this study, we selected eight representative RTCMs to investigate the abundance, types, sizes, and polymers of MP and heavy metals and to assess the level of contamination of MPs and synergies between MPs and heavy metals in RTCMs. The abundance of MPs in different RTCM ranged from 20.83 to 43.65 items/g. The dominant type was fragment (95.43%), and the dominant particle size was < 0.5 mm (73.72%) in MPs. Polyurethane (PU) (29.21%) and acrylics (ACR 13.53%) were the dominant polymers of MP. MP polymers showed obvious correlations with type and particle size: PU was enriched in 0-50-mm and 100-300-mm fragments, whereas ethylene vinyl acetate and ACR were enriched in 0-30-mm fibers. The heavy metals arsenic (As), lead (Pb), and chromium (Cr) were found to be more susceptible to synergistic contamination with MPs in RTCMs compared to other heavy metals. The estimated daily intake (EDI) of the MPs and heavy metals for RG (Rehmannia glutinosa) and RAY (Rhizoma atractylodis) were higher than others. The results showed that MP pollution is common in RTCMs and carries the potential risk of heavy metal or MP poisoning in humans who consume RTCMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信