基于深度学习的锥形束计算机断层下颌管分割达到了人类水平的性能。

IF 2.9 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Wiebke Semper-Hogg, Alexander Rau, Marc Anton Fuessinger, Sabrina Zimmermann, Fabian Bamberg, Marc Christian Metzger, Rainer Schmelzeisen, Stephan Rau, Marco Reisert, Maximilian Frederik Russe
{"title":"基于深度学习的锥形束计算机断层下颌管分割达到了人类水平的性能。","authors":"Wiebke Semper-Hogg, Alexander Rau, Marc Anton Fuessinger, Sabrina Zimmermann, Fabian Bamberg, Marc Christian Metzger, Rainer Schmelzeisen, Stephan Rau, Marco Reisert, Maximilian Frederik Russe","doi":"10.1093/dmfr/twae069","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study evaluated the accuracy and reliability of deep learning-based segmentation techniques for mandibular canal identification in cone-beam CT (CBCT) data to provide a reliable and efficient support tool for dental implant treatment planning.</p><p><strong>Methods: </strong>A dataset of 90 CBCT scans was annotated as ground truth for mandibular canal segmentation. The dataset was split into training (n = 69), validation (n = 1), and testing (n = 20) subsets. A deep learning model based on a hierarchical convolutional neural network architecture was developed and trained. The model's performance was evaluated using dice similarity coefficient (DSC), 95% Hausdorff distance (HD), and average symmetric surface distance (ASSD). Qualitative assessment was performed by 2 experienced dental imaging practitioners who evaluated the segmentation quality in terms of trust and safety on a 5-point Likert scale at 3 mandibular locations per side.</p><p><strong>Results: </strong>The trained model achieved a mean DSC of 0.77 ± 0.09, HD of 1.66 ± 0.86 mm, and ASSD of 0.31 ± 0.15 mm on the testing subset. Qualitative assessment showed no significant difference between the deep learning-based segmentation and ground truth in terms of trust and safety across all investigated locations (P > 0.05).</p><p><strong>Conclusions: </strong>The proposed deep learning-based segmentation technique exhibits sufficient accuracy for the reliable identification of mandibular canals in CBCT scans. This automated approach could streamline the pre-operative planning process for dental implant placement, reducing the risk of neurovascular complications and enhancing patient safety.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"279-285"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based segmentation of the mandibular canals in cone-beam CT reaches human-level performance.\",\"authors\":\"Wiebke Semper-Hogg, Alexander Rau, Marc Anton Fuessinger, Sabrina Zimmermann, Fabian Bamberg, Marc Christian Metzger, Rainer Schmelzeisen, Stephan Rau, Marco Reisert, Maximilian Frederik Russe\",\"doi\":\"10.1093/dmfr/twae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study evaluated the accuracy and reliability of deep learning-based segmentation techniques for mandibular canal identification in cone-beam CT (CBCT) data to provide a reliable and efficient support tool for dental implant treatment planning.</p><p><strong>Methods: </strong>A dataset of 90 CBCT scans was annotated as ground truth for mandibular canal segmentation. The dataset was split into training (n = 69), validation (n = 1), and testing (n = 20) subsets. A deep learning model based on a hierarchical convolutional neural network architecture was developed and trained. The model's performance was evaluated using dice similarity coefficient (DSC), 95% Hausdorff distance (HD), and average symmetric surface distance (ASSD). Qualitative assessment was performed by 2 experienced dental imaging practitioners who evaluated the segmentation quality in terms of trust and safety on a 5-point Likert scale at 3 mandibular locations per side.</p><p><strong>Results: </strong>The trained model achieved a mean DSC of 0.77 ± 0.09, HD of 1.66 ± 0.86 mm, and ASSD of 0.31 ± 0.15 mm on the testing subset. Qualitative assessment showed no significant difference between the deep learning-based segmentation and ground truth in terms of trust and safety across all investigated locations (P > 0.05).</p><p><strong>Conclusions: </strong>The proposed deep learning-based segmentation technique exhibits sufficient accuracy for the reliable identification of mandibular canals in CBCT scans. This automated approach could streamline the pre-operative planning process for dental implant placement, reducing the risk of neurovascular complications and enhancing patient safety.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"279-285\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/dmfr/twae069\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twae069","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究评估基于深度学习的下颌管分割技术在CBCT数据中识别的准确性和可靠性,为种植牙治疗计划提供可靠、高效的支持工具。方法:将90个锥形束计算机断层扫描(CBCT)数据集注释为下颌管分割的基础事实。数据集被分成训练(n = 69)、验证(n = 1)和测试(n = 20)三个子集。开发并训练了基于层次卷积神经网络结构的深度学习模型。使用Dice相似系数(DSC)、95% Hausdorff距离(HD)和平均对称表面距离(ASSD)来评估模型的性能。定性评估由两名经验丰富的牙科成像从业人员进行,他们在每侧三个下颌位置的5分Likert量表上评估分割质量的信任和安全性。结果:所训练的模型在测试子集上的平均DSC为0.77±0.09,HD为1.66±0.86 mm, ASSD为0.31±0.15 mm。定性评估显示,在所有调查地点的信任和安全性方面,基于深度学习的分割与ground truth之间没有显着差异(p > 0.05)。结论:所提出的基于深度学习的分割技术具有足够的准确性,可以在CBCT扫描中可靠地识别下颌管。这种自动化的方法可以简化牙种植体植入的术前计划过程,降低神经血管并发症的风险,提高患者的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based segmentation of the mandibular canals in cone-beam CT reaches human-level performance.

Objectives: This study evaluated the accuracy and reliability of deep learning-based segmentation techniques for mandibular canal identification in cone-beam CT (CBCT) data to provide a reliable and efficient support tool for dental implant treatment planning.

Methods: A dataset of 90 CBCT scans was annotated as ground truth for mandibular canal segmentation. The dataset was split into training (n = 69), validation (n = 1), and testing (n = 20) subsets. A deep learning model based on a hierarchical convolutional neural network architecture was developed and trained. The model's performance was evaluated using dice similarity coefficient (DSC), 95% Hausdorff distance (HD), and average symmetric surface distance (ASSD). Qualitative assessment was performed by 2 experienced dental imaging practitioners who evaluated the segmentation quality in terms of trust and safety on a 5-point Likert scale at 3 mandibular locations per side.

Results: The trained model achieved a mean DSC of 0.77 ± 0.09, HD of 1.66 ± 0.86 mm, and ASSD of 0.31 ± 0.15 mm on the testing subset. Qualitative assessment showed no significant difference between the deep learning-based segmentation and ground truth in terms of trust and safety across all investigated locations (P > 0.05).

Conclusions: The proposed deep learning-based segmentation technique exhibits sufficient accuracy for the reliable identification of mandibular canals in CBCT scans. This automated approach could streamline the pre-operative planning process for dental implant placement, reducing the risk of neurovascular complications and enhancing patient safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
9.10%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging. Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology. The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal. Quick Facts: - 2015 Impact Factor - 1.919 - Receipt to first decision - average of 3 weeks - Acceptance to online publication - average of 3 weeks - Open access option - ISSN: 0250-832X - eISSN: 1476-542X
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信