{"title":"母亲雄激素暴露的男性后代糖尿病易感性的跨代遗传。","authors":"Yuqing Zhang, Shourui Hu, Shan Han, Congcong Liu, Xiaofan Liang, Yuxuan Li, Zongxuan Lin, Yiming Qin, Chunxuan Geng, Yue Liu, Linlin Cui, Jingmei Hu, Changming Zhang, Zhao Wang, Xin Liu, Jinlong Ma, Zi-Jiang Chen, Han Zhao","doi":"10.1038/s41421-025-00769-1","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations' metabolic health.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"14"},"PeriodicalIF":13.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transgenerational inheritance of diabetes susceptibility in male offspring with maternal androgen exposure.\",\"authors\":\"Yuqing Zhang, Shourui Hu, Shan Han, Congcong Liu, Xiaofan Liang, Yuxuan Li, Zongxuan Lin, Yiming Qin, Chunxuan Geng, Yue Liu, Linlin Cui, Jingmei Hu, Changming Zhang, Zhao Wang, Xin Liu, Jinlong Ma, Zi-Jiang Chen, Han Zhao\",\"doi\":\"10.1038/s41421-025-00769-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations' metabolic health.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"14\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00769-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00769-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Transgenerational inheritance of diabetes susceptibility in male offspring with maternal androgen exposure.
Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations' metabolic health.
Cell DiscoveryBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍:
Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research.
Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals.
In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.