Daurisoline通过调节γ-分泌酶/Notch轴抑制三阴性乳腺癌的进展。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI:10.4062/biomolther.2024.131
Xiangyi Zhan, Xiaoyong Chen, Mei Feng, Kuo Yao, Kefan Yang, Hui Jia
{"title":"Daurisoline通过调节γ-分泌酶/Notch轴抑制三阴性乳腺癌的进展。","authors":"Xiangyi Zhan, Xiaoyong Chen, Mei Feng, Kuo Yao, Kefan Yang, Hui Jia","doi":"10.4062/biomolther.2024.131","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from <i>Menispermum dauricum</i>, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated <i>in vitro</i>. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through <i>in vivo</i> experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline's anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects. This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"331-343"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893495/pdf/","citationCount":"0","resultStr":"{\"title\":\"Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γ-Secretase/Notch Axis.\",\"authors\":\"Xiangyi Zhan, Xiaoyong Chen, Mei Feng, Kuo Yao, Kefan Yang, Hui Jia\",\"doi\":\"10.4062/biomolther.2024.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from <i>Menispermum dauricum</i>, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated <i>in vitro</i>. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through <i>in vivo</i> experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline's anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects. This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"331-343\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.131\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)是一种具有挑战性的乳腺癌亚型,临床上缺乏靶向治疗药物。天然活性成分为发现和开发TNBC靶向治疗提供了有希望的机会。本研究探讨了尿尿素对TNBC的影响,并阐明了其可能的机制。利用网络药理学,研究人员确定了从月桂草(Menispermum dauricum)中提取的daurisoline与乳腺癌之间的相关性,特别是涉及Notch信号通路。在体外实验中,我们观察了白瑞林对MDA-MB-231和MDA-MB-468细胞增殖、迁移和凋亡的影响。此外,我们还通过体内实验评估了白瑞林对裸鼠MDA-MB-231异种移植瘤生长的影响。利用分子对接和Western blotting技术检测Notch信号通路相关蛋白Notch-1、NICD、psen1、Bax和Bcl-2的表达水平,探讨daurisoline抗乳腺癌作用的潜在机制。结果表明,桃里索林能有效抑制MDA-MB-231和MDA-MB-468细胞的增殖和迁移,促进细胞凋亡。此外,它还能显著降低裸鼠皮下肿瘤的生长。值得注意的是,daurisoline可以通过结合催化核心PSEN-1来降低γ-分泌酶的水解活性,从而抑制γ-分泌酶/Notch轴的激活,从而促进其抗tnbc的作用。该研究为TNBC天然靶向药物的开发提供了支持,并为二苯基异喹啉类生物碱(如daurisoline)的研究提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γ-Secretase/Notch Axis.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is challenging to treat and lacks targeted therapeutic drugs in the clinic. Natural active ingredients provide promising opportunities for discovering and developing targeted therapies for TNBC. This study investigated the effects of daurisoline on TNBC and elucidated its potential mechanisms. Using network pharmacology, a correlation was identified between daurisoline, derived from Menispermum dauricum, and breast cancer, particularly involving the Notch signaling pathway. The effects of daurisoline on the proliferation, migration, and apoptosis of MDA-MB-231 and MDA-MB-468 cells were evaluated in vitro. Additionally, the impact of daurisoline on the growth of MDA-MB-231 xenograft tumors in nude mice was assessed through in vivo experiments. Expression levels of Notch signaling pathway-related proteins, including Notch-1, NICD, PSEN-1, Bax, and Bcl-2, were examined using molecular docking and Western blotting to explore the underlying mechanisms of daurisoline's anti-breast cancer effects. It was revealed that daurisoline could effectively inhibit the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells and promote apoptosis. Furthermore, it significantly reduced the growth of subcutaneous tumors in nude mice. Notably, daurisoline could reduce the hydrolytic activity of γ-secretase by binding to the catalytic core PSEN-1, thereby inhibiting activation of the γ-secretase/Notch axis and contributing to its anti-TNBC effects. This study supported the development of naturally targeted drugs for TNBC and provided insights into the research on dibenzylisoquinoline alkaloids, such as daurisoline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信