多溴联苯通过破坏 KEAP1/Nrf2/SLC7A11 轴,导致肝细胞中 GSH 合成受损和铁变态反应,从而诱发肝损伤。

IF 4.8 2区 医学 Q1 TOXICOLOGY
Longteng Jin, Ya Zhang, Yuhan Xia, Qifang Wu, Huanjuan Yan, Haibin Tong, Maoping Chu, Zhengwang Wen
{"title":"多溴联苯通过破坏 KEAP1/Nrf2/SLC7A11 轴,导致肝细胞中 GSH 合成受损和铁变态反应,从而诱发肝损伤。","authors":"Longteng Jin, Ya Zhang, Yuhan Xia, Qifang Wu, Huanjuan Yan, Haibin Tong, Maoping Chu, Zhengwang Wen","doi":"10.1007/s00204-025-03973-w","DOIUrl":null,"url":null,"abstract":"<p><p>Polybrominated biphenyls (PBBs) are persistent organic pollutants (POPs) widespread in the environment, presenting significant health hazards due to their bioaccumulation, particularly in liver. Ferroptosis, an iron-dependent form of cell death, has not been previously linked to PBBs-induced hepatotoxicity. This study investigated whether PBBs induce hepatotoxicity through ferroptosis and the toxicological mechanism using mice and THLE-2 cells models exposed to PBB mixture (BP-6). Histopathological and biochemical analyses revealed that BP-6 exposure-induced hepatic injury, oxidative stress, and inflammatory response in mice. BP-6 exposure induced a significant increase in Fe<sup>2+</sup> content and a decrease in FTH1, SLC7A11 and GPX4 protein expression in hepatocytes, resulting in severe lipid peroxide accumulation and GSH depletion. Ferroptosis inhibitors, Fer-1 and DFO, reversed the iron metabolism disruption caused by BP-6, underscoring the critical role of ferroptosis in BP-6-induced liver injury. Mechanistically, BP-6 exposure impaired GSH synthesis by preventing Nrf2 nuclear translocation and Slc7a11 transcription through upregulating KEAP1 levels. Keap1 knockdown or Slc7a11 overexpression reversed BP-6-induced lipid peroxide accumulation and GSH depletion, confirming the involvement of ferroptosis in BP-6-induced hepatotoxicity. In addition, curcumin, a natural Nrf2 agonist, significantly alleviated BP-6-induced ferroptosis and liver injury in vitro and in vivo by restoring SLC7A11 protein expression and GSH synthesis. These findings elucidate the toxicological mechanism of PBBs and suggest potential therapeutic strategies to counteract PBBs exposure.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polybrominated biphenyls induce liver injury by disrupting the KEAP1/Nrf2/SLC7A11 axis leading to impaired GSH synthesis and ferroptosis in hepatocytes.\",\"authors\":\"Longteng Jin, Ya Zhang, Yuhan Xia, Qifang Wu, Huanjuan Yan, Haibin Tong, Maoping Chu, Zhengwang Wen\",\"doi\":\"10.1007/s00204-025-03973-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polybrominated biphenyls (PBBs) are persistent organic pollutants (POPs) widespread in the environment, presenting significant health hazards due to their bioaccumulation, particularly in liver. Ferroptosis, an iron-dependent form of cell death, has not been previously linked to PBBs-induced hepatotoxicity. This study investigated whether PBBs induce hepatotoxicity through ferroptosis and the toxicological mechanism using mice and THLE-2 cells models exposed to PBB mixture (BP-6). Histopathological and biochemical analyses revealed that BP-6 exposure-induced hepatic injury, oxidative stress, and inflammatory response in mice. BP-6 exposure induced a significant increase in Fe<sup>2+</sup> content and a decrease in FTH1, SLC7A11 and GPX4 protein expression in hepatocytes, resulting in severe lipid peroxide accumulation and GSH depletion. Ferroptosis inhibitors, Fer-1 and DFO, reversed the iron metabolism disruption caused by BP-6, underscoring the critical role of ferroptosis in BP-6-induced liver injury. Mechanistically, BP-6 exposure impaired GSH synthesis by preventing Nrf2 nuclear translocation and Slc7a11 transcription through upregulating KEAP1 levels. Keap1 knockdown or Slc7a11 overexpression reversed BP-6-induced lipid peroxide accumulation and GSH depletion, confirming the involvement of ferroptosis in BP-6-induced hepatotoxicity. In addition, curcumin, a natural Nrf2 agonist, significantly alleviated BP-6-induced ferroptosis and liver injury in vitro and in vivo by restoring SLC7A11 protein expression and GSH synthesis. These findings elucidate the toxicological mechanism of PBBs and suggest potential therapeutic strategies to counteract PBBs exposure.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-03973-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-03973-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polybrominated biphenyls induce liver injury by disrupting the KEAP1/Nrf2/SLC7A11 axis leading to impaired GSH synthesis and ferroptosis in hepatocytes.

Polybrominated biphenyls (PBBs) are persistent organic pollutants (POPs) widespread in the environment, presenting significant health hazards due to their bioaccumulation, particularly in liver. Ferroptosis, an iron-dependent form of cell death, has not been previously linked to PBBs-induced hepatotoxicity. This study investigated whether PBBs induce hepatotoxicity through ferroptosis and the toxicological mechanism using mice and THLE-2 cells models exposed to PBB mixture (BP-6). Histopathological and biochemical analyses revealed that BP-6 exposure-induced hepatic injury, oxidative stress, and inflammatory response in mice. BP-6 exposure induced a significant increase in Fe2+ content and a decrease in FTH1, SLC7A11 and GPX4 protein expression in hepatocytes, resulting in severe lipid peroxide accumulation and GSH depletion. Ferroptosis inhibitors, Fer-1 and DFO, reversed the iron metabolism disruption caused by BP-6, underscoring the critical role of ferroptosis in BP-6-induced liver injury. Mechanistically, BP-6 exposure impaired GSH synthesis by preventing Nrf2 nuclear translocation and Slc7a11 transcription through upregulating KEAP1 levels. Keap1 knockdown or Slc7a11 overexpression reversed BP-6-induced lipid peroxide accumulation and GSH depletion, confirming the involvement of ferroptosis in BP-6-induced hepatotoxicity. In addition, curcumin, a natural Nrf2 agonist, significantly alleviated BP-6-induced ferroptosis and liver injury in vitro and in vivo by restoring SLC7A11 protein expression and GSH synthesis. These findings elucidate the toxicological mechanism of PBBs and suggest potential therapeutic strategies to counteract PBBs exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信