单个肠促胰岛素受体敲除小鼠不会通过增加葡萄糖刺激的剩余肠促胰岛素激素的分泌来补偿。

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Katrine D Galsgaard, Jon Vergara, Sara L Jepsen, Alice Bazzichi, Hannelouise Kissow, Mark M Smits, Jens J Holst
{"title":"单个肠促胰岛素受体敲除小鼠不会通过增加葡萄糖刺激的剩余肠促胰岛素激素的分泌来补偿。","authors":"Katrine D Galsgaard, Jon Vergara, Sara L Jepsen, Alice Bazzichi, Hannelouise Kissow, Mark M Smits, Jens J Holst","doi":"10.1152/ajpendo.00437.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones. Lack of GLP-1 receptor signaling has been reported to be compensated for by increased GIP secretion and action. Conversely, GLP-1 sensitivity has been reported to be increased in GIP receptor knockout (<i>Gipr</i><sup>-/-</sup>) mice. This suggests a compensatory adaptation to the loss of incretin signaling via increased action/secretion of the remaining incretin hormone. We assessed glucose-stimulated GIP and GLP-1 secretion during oral glucose tolerance tests (OGTTs) and in isolated perfused intestines of GLP-1 receptor knockout (<i>Glp-1r</i><sup>-/-</sup>) mice and their wild-type littermates (<i>Glp-1r</i><sup>+/+</sup>) and in <i>Gipr</i><sup>-/-</sup> mice and their wild-type littermates (<i>Gipr</i><sup>+/+</sup>). Sensitivity to GIP and GLP-1 was assessed in isolated perfused pancreases of <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice, respectively. We found similar GIP responses in <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and similar GLP-1 responses in <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice during the OGTTs and in the isolated perfused intestines. Insulin responses to GIP and GLP-1 were similar in <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and in <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice, respectively. Our results do not support the existence of a compensatory adaptation to the loss of single incretin signaling via increased glucose-stimulated secretion of, or sensitivity to, the remaining incretin hormone.<b>NEW & NOTEWORTHY</b> We show that mice lacking the GLP-1 receptor do not compensate by increased glucose-stimulated GIP secretion or sensitivity, nor do mice lacking the GIP receptor compensate by increased glucose-stimulated GLP-1 secretion or sensitivity. The notion of a compensatory adaptation to the loss of single incretin signaling via increased action/secretion of the remaining incretin hormone was thus not supported using single incretin receptor knockout mice.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E435-E446"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single incretin receptor knockout mice do not compensate by increasing glucose-stimulated secretion of the remaining incretin hormone.\",\"authors\":\"Katrine D Galsgaard, Jon Vergara, Sara L Jepsen, Alice Bazzichi, Hannelouise Kissow, Mark M Smits, Jens J Holst\",\"doi\":\"10.1152/ajpendo.00437.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones. Lack of GLP-1 receptor signaling has been reported to be compensated for by increased GIP secretion and action. Conversely, GLP-1 sensitivity has been reported to be increased in GIP receptor knockout (<i>Gipr</i><sup>-/-</sup>) mice. This suggests a compensatory adaptation to the loss of incretin signaling via increased action/secretion of the remaining incretin hormone. We assessed glucose-stimulated GIP and GLP-1 secretion during oral glucose tolerance tests (OGTTs) and in isolated perfused intestines of GLP-1 receptor knockout (<i>Glp-1r</i><sup>-/-</sup>) mice and their wild-type littermates (<i>Glp-1r</i><sup>+/+</sup>) and in <i>Gipr</i><sup>-/-</sup> mice and their wild-type littermates (<i>Gipr</i><sup>+/+</sup>). Sensitivity to GIP and GLP-1 was assessed in isolated perfused pancreases of <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice, respectively. We found similar GIP responses in <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and similar GLP-1 responses in <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice during the OGTTs and in the isolated perfused intestines. Insulin responses to GIP and GLP-1 were similar in <i>Glp-1r</i><sup>-/-</sup> and <i>Glp-1r</i><sup>+/+</sup> mice and in <i>Gipr</i><sup>-/-</sup> and <i>Gipr</i><sup>+/+</sup> mice, respectively. Our results do not support the existence of a compensatory adaptation to the loss of single incretin signaling via increased glucose-stimulated secretion of, or sensitivity to, the remaining incretin hormone.<b>NEW & NOTEWORTHY</b> We show that mice lacking the GLP-1 receptor do not compensate by increased glucose-stimulated GIP secretion or sensitivity, nor do mice lacking the GIP receptor compensate by increased glucose-stimulated GLP-1 secretion or sensitivity. The notion of a compensatory adaptation to the loss of single incretin signaling via increased action/secretion of the remaining incretin hormone was thus not supported using single incretin receptor knockout mice.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E435-E446\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00437.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00437.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

胰高血糖素样肽-1 (GLP-1)和葡萄糖依赖性胰岛素性多肽(GIP)是肠促胰岛素激素。据报道,缺乏GLP-1受体信号可以通过增加GIP分泌和作用来补偿。相反,据报道,在GIP受体敲除(Gipr-/-)小鼠中,GLP-1敏感性增加。这表明通过增加剩余肠促胰岛素激素的作用/分泌,对肠促胰岛素信号丧失的补偿性适应。我们在口服糖耐量试验(ogtt)、GLP-1受体敲除(Glp-1r-/-)小鼠及其野生型幼崽(Glp-1r+/+)和Gipr-/-小鼠及其野生型幼崽(Gipr+/+)的离体灌注肠中评估了葡萄糖刺激的GIP和GLP-1分泌。分别在离体灌注胰腺Glp-1r-/-和Glp-1r+/+小鼠以及Gipr-/-和Gipr+/+小鼠中评估对GIP和GLP-1的敏感性。我们发现Glp-1r-/-和Glp-1r+/+小鼠中有类似的GIP反应,在ogtt期间和离体灌注肠中,Gipr-/-和Gipr+/+小鼠中也有类似的GLP-1反应。在Glp-1r-/-和Glp-1r+/+小鼠以及Gipr-/-和Gipr+/+小鼠中,胰岛素对GIP和GLP-1的反应相似。我们的研究结果不支持通过增加葡萄糖刺激的促肠促素的分泌或对剩余促肠促素的敏感性,对单个促肠促素信号丧失的代偿性适应的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single incretin receptor knockout mice do not compensate by increasing glucose-stimulated secretion of the remaining incretin hormone.

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones. Lack of GLP-1 receptor signaling has been reported to be compensated for by increased GIP secretion and action. Conversely, GLP-1 sensitivity has been reported to be increased in GIP receptor knockout (Gipr-/-) mice. This suggests a compensatory adaptation to the loss of incretin signaling via increased action/secretion of the remaining incretin hormone. We assessed glucose-stimulated GIP and GLP-1 secretion during oral glucose tolerance tests (OGTTs) and in isolated perfused intestines of GLP-1 receptor knockout (Glp-1r-/-) mice and their wild-type littermates (Glp-1r+/+) and in Gipr-/- mice and their wild-type littermates (Gipr+/+). Sensitivity to GIP and GLP-1 was assessed in isolated perfused pancreases of Glp-1r-/- and Glp-1r+/+ mice and Gipr-/- and Gipr+/+ mice, respectively. We found similar GIP responses in Glp-1r-/- and Glp-1r+/+ mice and similar GLP-1 responses in Gipr-/- and Gipr+/+ mice during the OGTTs and in the isolated perfused intestines. Insulin responses to GIP and GLP-1 were similar in Glp-1r-/- and Glp-1r+/+ mice and in Gipr-/- and Gipr+/+ mice, respectively. Our results do not support the existence of a compensatory adaptation to the loss of single incretin signaling via increased glucose-stimulated secretion of, or sensitivity to, the remaining incretin hormone.NEW & NOTEWORTHY We show that mice lacking the GLP-1 receptor do not compensate by increased glucose-stimulated GIP secretion or sensitivity, nor do mice lacking the GIP receptor compensate by increased glucose-stimulated GLP-1 secretion or sensitivity. The notion of a compensatory adaptation to the loss of single incretin signaling via increased action/secretion of the remaining incretin hormone was thus not supported using single incretin receptor knockout mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信