detecve:快速、灵敏、精确地检测基因组数据中的内源性病毒元素。

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nadja Brait, Thomas Hackl, Sebastian Lequime
{"title":"detecve:快速、灵敏、精确地检测基因组数据中的内源性病毒元素。","authors":"Nadja Brait,&nbsp;Thomas Hackl,&nbsp;Sebastian Lequime","doi":"10.1111/1755-0998.14083","DOIUrl":null,"url":null,"abstract":"<p>Endogenous viral elements (EVEs) are fragments of viral genomic material embedded within the host genome. Retroviruses contribute to the majority of EVEs because of their genomic integration during their life cycle; however, the latter can also arise from non-retroviral RNA or DNA viruses, then collectively known as non-retroviral (nr) EVEs. Detecting nrEVEs poses challenges because of their sequence and genomic structural diversity, contributing to the scarcity of specific tools designed for nrEVEs detection. Here, we introduce <i>detectEVE</i>, a user-friendly and open-source tool designed for the accurate identification of nrEVEs in genomic assemblies. <i>detectEVE</i> deviates from other nrEVE detection pipelines, which usually classify sequences in a more rigid manner as either virus-associated or not. Instead, we implemented a scaling system assigning confidence scores to hits in protein sequence similarity searches, using bit score distributions and search hints related to various viral characteristics, allowing for higher sensitivity and specificity. Our benchmarking shows that <i>detectEVE</i> is computationally efficient and accurate, as well as considerably faster than existing approaches, because of its resource-efficient parallel execution. Our tool can help to fill current gaps in both host-associated fields and virus-related studies. This includes (i) enhancing genome annotations with metadata for EVE loci, (ii) conducting large-scale paleo-virological studies to explore deep viral evolutionary histories, and (iii) aiding in the identification of actively expressed EVEs in transcriptomic data, reducing the risk of misinterpretations between exogenous viruses and EVEs.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"25 4","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14083","citationCount":"0","resultStr":"{\"title\":\"detectEVE: Fast, Sensitive and Precise Detection of Endogenous Viral Elements in Genomic Data\",\"authors\":\"Nadja Brait,&nbsp;Thomas Hackl,&nbsp;Sebastian Lequime\",\"doi\":\"10.1111/1755-0998.14083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endogenous viral elements (EVEs) are fragments of viral genomic material embedded within the host genome. Retroviruses contribute to the majority of EVEs because of their genomic integration during their life cycle; however, the latter can also arise from non-retroviral RNA or DNA viruses, then collectively known as non-retroviral (nr) EVEs. Detecting nrEVEs poses challenges because of their sequence and genomic structural diversity, contributing to the scarcity of specific tools designed for nrEVEs detection. Here, we introduce <i>detectEVE</i>, a user-friendly and open-source tool designed for the accurate identification of nrEVEs in genomic assemblies. <i>detectEVE</i> deviates from other nrEVE detection pipelines, which usually classify sequences in a more rigid manner as either virus-associated or not. Instead, we implemented a scaling system assigning confidence scores to hits in protein sequence similarity searches, using bit score distributions and search hints related to various viral characteristics, allowing for higher sensitivity and specificity. Our benchmarking shows that <i>detectEVE</i> is computationally efficient and accurate, as well as considerably faster than existing approaches, because of its resource-efficient parallel execution. Our tool can help to fill current gaps in both host-associated fields and virus-related studies. This includes (i) enhancing genome annotations with metadata for EVE loci, (ii) conducting large-scale paleo-virological studies to explore deep viral evolutionary histories, and (iii) aiding in the identification of actively expressed EVEs in transcriptomic data, reducing the risk of misinterpretations between exogenous viruses and EVEs.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14083\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14083\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14083","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内源性病毒元件(EVEs)是嵌入宿主基因组中的病毒基因组物质片段。由于逆转录病毒在其生命周期内的基因组整合,导致了大多数ev;然而,后者也可以由非逆转录病毒RNA或DNA病毒引起,然后统称为非逆转录病毒(nr) EVEs。由于nreve的序列和基因组结构的多样性,检测nreve带来了挑战,导致专门用于nreve检测的工具稀缺。在这里,我们介绍detectEVE,这是一个用户友好的开源工具,旨在准确识别基因组组装中的nreve。detectEVE不同于其他nrEVE检测管道,后者通常以更严格的方式将序列分类为病毒相关或非病毒相关。相反,我们实现了一个缩放系统,使用与各种病毒特征相关的比特分数分布和搜索提示,为蛋白质序列相似性搜索中的命中分配置信度分数,从而具有更高的灵敏度和特异性。我们的基准测试表明,detectEVE具有计算效率和准确性,并且比现有方法快得多,因为它具有资源效率高的并行执行。我们的工具可以帮助填补当前宿主相关领域和病毒相关研究的空白。这包括(i)利用EVE基因座的元数据增强基因组注释,(ii)开展大规模古病毒学研究以探索病毒的深层进化历史,以及(iii)在转录组数据中帮助鉴定活跃表达的EVE,降低外源病毒和EVE之间误解的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

detectEVE: Fast, Sensitive and Precise Detection of Endogenous Viral Elements in Genomic Data

detectEVE: Fast, Sensitive and Precise Detection of Endogenous Viral Elements in Genomic Data

Endogenous viral elements (EVEs) are fragments of viral genomic material embedded within the host genome. Retroviruses contribute to the majority of EVEs because of their genomic integration during their life cycle; however, the latter can also arise from non-retroviral RNA or DNA viruses, then collectively known as non-retroviral (nr) EVEs. Detecting nrEVEs poses challenges because of their sequence and genomic structural diversity, contributing to the scarcity of specific tools designed for nrEVEs detection. Here, we introduce detectEVE, a user-friendly and open-source tool designed for the accurate identification of nrEVEs in genomic assemblies. detectEVE deviates from other nrEVE detection pipelines, which usually classify sequences in a more rigid manner as either virus-associated or not. Instead, we implemented a scaling system assigning confidence scores to hits in protein sequence similarity searches, using bit score distributions and search hints related to various viral characteristics, allowing for higher sensitivity and specificity. Our benchmarking shows that detectEVE is computationally efficient and accurate, as well as considerably faster than existing approaches, because of its resource-efficient parallel execution. Our tool can help to fill current gaps in both host-associated fields and virus-related studies. This includes (i) enhancing genome annotations with metadata for EVE loci, (ii) conducting large-scale paleo-virological studies to explore deep viral evolutionary histories, and (iii) aiding in the identification of actively expressed EVEs in transcriptomic data, reducing the risk of misinterpretations between exogenous viruses and EVEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信