调查在大学量子技术课程中使用多重表征的情况

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Eva Rexigel, Jonas Bley, Alda Arias, Linda Qerimi, Stefan Küchemann, Jochen Kuhn, Artur Widera
{"title":"调查在大学量子技术课程中使用多重表征的情况","authors":"Eva Rexigel,&nbsp;Jonas Bley,&nbsp;Alda Arias,&nbsp;Linda Qerimi,&nbsp;Stefan Küchemann,&nbsp;Jochen Kuhn,&nbsp;Artur Widera","doi":"10.1140/epjqt/s40507-025-00327-4","DOIUrl":null,"url":null,"abstract":"<div><p>The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00327-4","citationCount":"0","resultStr":"{\"title\":\"Investigating the use of multiple representations in university courses on quantum technologies\",\"authors\":\"Eva Rexigel,&nbsp;Jonas Bley,&nbsp;Alda Arias,&nbsp;Linda Qerimi,&nbsp;Stefan Küchemann,&nbsp;Jochen Kuhn,&nbsp;Artur Widera\",\"doi\":\"10.1140/epjqt/s40507-025-00327-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00327-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00327-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00327-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子信息科学与技术(QIST)教育领域对学生和教育者都提出了独特的挑战,例如理解量子系统抽象特性的必要性。为了提供对量子系统更直观的理解,近年来已经开发了许多量子比特表示。鉴于领域的多样性,特定表示可能更适合于一个内容领域而不是另一个内容领域。因此,代表的选择可能会根据课程的方向而有很大的不同。然而,对于高等教育QIST课程中单量子位系统和多量子位系统的表示之间的差异,还没有进行详尽的分析。此外,影响选择合适代表的因素仍然存在。为了缩小这一差距,我们对德国和奥地利不同大学的25名教育工作者进行了一项在线调查,了解他们在qist相关课程中使用表征的情况。结果证实了数学形式主义在QIST教育中的关键作用,无论具体的课程特征如何,但也揭示了通过有意和全面使用多个外部表征(MERs)来增强学生学习的未开发潜力,特别是在多量子位系统的情况下。研究结果在QIST领域的背景下进行了讨论,并对使用MERs学习的当前见解进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the use of multiple representations in university courses on quantum technologies

The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信