从结构清晰程度不同的俄语文档中提取命名实体

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
M. D. Averina, O. A. Levanova
{"title":"从结构清晰程度不同的俄语文档中提取命名实体","authors":"M. D. Averina,&nbsp;O. A. Levanova","doi":"10.3103/S0146411624700391","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the task of recognizing named entities in Russian texts using the CRF model. We analyze two datasets: well-structured refinancing documents and loosely structured court transcripts. We test the model with various text features and CRF parameters (optimization algorithms). On average, the best F-measure for well-structured documents is 0.99, while for loosely structured ones, it is 0.86.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 7","pages":"969 - 976"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Named Entities from Russian-Language Documents with Varying Degrees of Structural Clarity\",\"authors\":\"M. D. Averina,&nbsp;O. A. Levanova\",\"doi\":\"10.3103/S0146411624700391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the task of recognizing named entities in Russian texts using the CRF model. We analyze two datasets: well-structured refinancing documents and loosely structured court transcripts. We test the model with various text features and CRF parameters (optimization algorithms). On average, the best F-measure for well-structured documents is 0.99, while for loosely structured ones, it is 0.86.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 7\",\"pages\":\"969 - 976\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究解决了使用CRF模型识别俄语文本中命名实体的任务。我们分析了两个数据集:结构良好的再融资文件和结构松散的法庭记录。我们用各种文本特征和CRF参数(优化算法)测试模型。平均而言,结构良好的文档的最佳f度量值为0.99,而结构松散的文档的最佳f度量值为0.86。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extracting Named Entities from Russian-Language Documents with Varying Degrees of Structural Clarity

Extracting Named Entities from Russian-Language Documents with Varying Degrees of Structural Clarity

This study addresses the task of recognizing named entities in Russian texts using the CRF model. We analyze two datasets: well-structured refinancing documents and loosely structured court transcripts. We test the model with various text features and CRF parameters (optimization algorithms). On average, the best F-measure for well-structured documents is 0.99, while for loosely structured ones, it is 0.86.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信