{"title":"插值投影估计的一种几何方法","authors":"M. V. Nevskii, A. Yu. Ukhalov","doi":"10.3103/S0146411624700330","DOIUrl":null,"url":null,"abstract":"<p>Suppose <span>\\(\\Omega \\)</span> is a closed bounded subset of <span>\\({{\\mathbb{R}}^{n}},\\)</span> <span>\\(S\\)</span> is an <span>\\(n\\)</span>-dimensional nondegenerate simplex, <span>\\(\\xi (\\Omega ;S): = \\min \\left\\{ {\\sigma \\geqslant 1:\\Omega \\subset \\sigma S} \\right\\}\\)</span>. Here <span>\\(\\sigma S\\)</span> is the result of homothety of <span>\\(S\\)</span> with respect to the center of gravity with coefficient <span>\\(\\sigma \\)</span>. Let <span>\\(d \\geqslant n + 1,\\)</span> <span>\\({{\\varphi }_{1}}(x), \\ldots ,{{\\varphi }_{d}}(x)\\)</span> be linearly independent monomials in <span>\\(n\\)</span> variables, <span>\\({{\\varphi }_{1}}(x) \\equiv 1,\\)</span> <span>\\({{\\varphi }_{2}}(x) = {{x}_{1}}, \\ldots ,\\;{{\\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\\)</span> Put <span>\\(\\Pi : = {\\text{lin}}({{\\varphi }_{1}}, \\ldots ,{{\\varphi }_{d}}).\\)</span> The interpolation projector <span>\\(P:C(\\Omega ) \\to \\Pi \\)</span> with a set of nodes <span>\\({{x}^{{(1)}}}, \\ldots ,{{x}^{{(d)}}}\\)</span> <span>\\( \\in \\Omega \\)</span> is defined by the equalities <span>\\(Pf\\left( {{{x}^{{(j)}}}} \\right) = f\\left( {{{x}^{{(j)}}}} \\right).\\)</span> Denote by <span>\\({{\\left\\| P \\right\\|}_{\\Omega }}\\)</span> the norm of <span>\\(P\\)</span> as an operator from <span>\\(C(\\Omega )\\)</span> to <span>\\(C(\\Omega )\\)</span>. Consider the mapping <span>\\(T:{{\\mathbb{R}}^{n}} \\to {{\\mathbb{R}}^{{d - 1}}}\\)</span> of the form <span>\\(T(x): = ({{\\varphi }_{2}}(x), \\ldots ,{{\\varphi }_{d}}(x)).\\)</span> We have the following inequalities: <span>\\(\\frac{1}{2}\\left( {1 + \\frac{1}{{d - 1}}} \\right)\\left( {{{{\\left\\| P \\right\\|}}_{\\Omega }} - 1} \\right) + 1\\)</span> <span>\\( \\leqslant \\xi (T(\\Omega );S) \\leqslant \\frac{d}{2}\\left( {{{{\\left\\| P \\right\\|}}_{\\Omega }} - 1} \\right) + 1.\\)</span> Here <span>\\(S\\)</span> is the <span>\\((d - 1)\\)</span>-dimensional simplex with vertices <span>\\(T({{x}^{{(j)}}}).\\)</span> We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 7","pages":"879 - 888"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Geometric Approach to the Estimation of Interpolation Projectors\",\"authors\":\"M. V. Nevskii, A. Yu. Ukhalov\",\"doi\":\"10.3103/S0146411624700330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose <span>\\\\(\\\\Omega \\\\)</span> is a closed bounded subset of <span>\\\\({{\\\\mathbb{R}}^{n}},\\\\)</span> <span>\\\\(S\\\\)</span> is an <span>\\\\(n\\\\)</span>-dimensional nondegenerate simplex, <span>\\\\(\\\\xi (\\\\Omega ;S): = \\\\min \\\\left\\\\{ {\\\\sigma \\\\geqslant 1:\\\\Omega \\\\subset \\\\sigma S} \\\\right\\\\}\\\\)</span>. Here <span>\\\\(\\\\sigma S\\\\)</span> is the result of homothety of <span>\\\\(S\\\\)</span> with respect to the center of gravity with coefficient <span>\\\\(\\\\sigma \\\\)</span>. Let <span>\\\\(d \\\\geqslant n + 1,\\\\)</span> <span>\\\\({{\\\\varphi }_{1}}(x), \\\\ldots ,{{\\\\varphi }_{d}}(x)\\\\)</span> be linearly independent monomials in <span>\\\\(n\\\\)</span> variables, <span>\\\\({{\\\\varphi }_{1}}(x) \\\\equiv 1,\\\\)</span> <span>\\\\({{\\\\varphi }_{2}}(x) = {{x}_{1}}, \\\\ldots ,\\\\;{{\\\\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\\\\)</span> Put <span>\\\\(\\\\Pi : = {\\\\text{lin}}({{\\\\varphi }_{1}}, \\\\ldots ,{{\\\\varphi }_{d}}).\\\\)</span> The interpolation projector <span>\\\\(P:C(\\\\Omega ) \\\\to \\\\Pi \\\\)</span> with a set of nodes <span>\\\\({{x}^{{(1)}}}, \\\\ldots ,{{x}^{{(d)}}}\\\\)</span> <span>\\\\( \\\\in \\\\Omega \\\\)</span> is defined by the equalities <span>\\\\(Pf\\\\left( {{{x}^{{(j)}}}} \\\\right) = f\\\\left( {{{x}^{{(j)}}}} \\\\right).\\\\)</span> Denote by <span>\\\\({{\\\\left\\\\| P \\\\right\\\\|}_{\\\\Omega }}\\\\)</span> the norm of <span>\\\\(P\\\\)</span> as an operator from <span>\\\\(C(\\\\Omega )\\\\)</span> to <span>\\\\(C(\\\\Omega )\\\\)</span>. Consider the mapping <span>\\\\(T:{{\\\\mathbb{R}}^{n}} \\\\to {{\\\\mathbb{R}}^{{d - 1}}}\\\\)</span> of the form <span>\\\\(T(x): = ({{\\\\varphi }_{2}}(x), \\\\ldots ,{{\\\\varphi }_{d}}(x)).\\\\)</span> We have the following inequalities: <span>\\\\(\\\\frac{1}{2}\\\\left( {1 + \\\\frac{1}{{d - 1}}} \\\\right)\\\\left( {{{{\\\\left\\\\| P \\\\right\\\\|}}_{\\\\Omega }} - 1} \\\\right) + 1\\\\)</span> <span>\\\\( \\\\leqslant \\\\xi (T(\\\\Omega );S) \\\\leqslant \\\\frac{d}{2}\\\\left( {{{{\\\\left\\\\| P \\\\right\\\\|}}_{\\\\Omega }} - 1} \\\\right) + 1.\\\\)</span> Here <span>\\\\(S\\\\)</span> is the <span>\\\\((d - 1)\\\\)</span>-dimensional simplex with vertices <span>\\\\(T({{x}^{{(j)}}}).\\\\)</span> We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 7\",\"pages\":\"879 - 888\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On a Geometric Approach to the Estimation of Interpolation Projectors
Suppose \(\Omega \) is a closed bounded subset of \({{\mathbb{R}}^{n}},\)\(S\) is an \(n\)-dimensional nondegenerate simplex, \(\xi (\Omega ;S): = \min \left\{ {\sigma \geqslant 1:\Omega \subset \sigma S} \right\}\). Here \(\sigma S\) is the result of homothety of \(S\) with respect to the center of gravity with coefficient \(\sigma \). Let \(d \geqslant n + 1,\)\({{\varphi }_{1}}(x), \ldots ,{{\varphi }_{d}}(x)\) be linearly independent monomials in \(n\) variables, \({{\varphi }_{1}}(x) \equiv 1,\)\({{\varphi }_{2}}(x) = {{x}_{1}}, \ldots ,\;{{\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\) Put \(\Pi : = {\text{lin}}({{\varphi }_{1}}, \ldots ,{{\varphi }_{d}}).\) The interpolation projector \(P:C(\Omega ) \to \Pi \) with a set of nodes \({{x}^{{(1)}}}, \ldots ,{{x}^{{(d)}}}\)\( \in \Omega \) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) Denote by \({{\left\| P \right\|}_{\Omega }}\) the norm of \(P\) as an operator from \(C(\Omega )\) to \(C(\Omega )\). Consider the mapping \(T:{{\mathbb{R}}^{n}} \to {{\mathbb{R}}^{{d - 1}}}\) of the form \(T(x): = ({{\varphi }_{2}}(x), \ldots ,{{\varphi }_{d}}(x)).\) We have the following inequalities: \(\frac{1}{2}\left( {1 + \frac{1}{{d - 1}}} \right)\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1\)\( \leqslant \xi (T(\Omega );S) \leqslant \frac{d}{2}\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1.\) Here \(S\) is the \((d - 1)\)-dimensional simplex with vertices \(T({{x}^{{(j)}}}).\) We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision