插值投影估计的一种几何方法

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
M. V. Nevskii, A. Yu. Ukhalov
{"title":"插值投影估计的一种几何方法","authors":"M. V. Nevskii,&nbsp;A. Yu. Ukhalov","doi":"10.3103/S0146411624700330","DOIUrl":null,"url":null,"abstract":"<p>Suppose <span>\\(\\Omega \\)</span> is a closed bounded subset of <span>\\({{\\mathbb{R}}^{n}},\\)</span> <span>\\(S\\)</span> is an <span>\\(n\\)</span>-dimensional nondegenerate simplex, <span>\\(\\xi (\\Omega ;S): = \\min \\left\\{ {\\sigma \\geqslant 1:\\Omega \\subset \\sigma S} \\right\\}\\)</span>. Here <span>\\(\\sigma S\\)</span> is the result of homothety of <span>\\(S\\)</span> with respect to the center of gravity with coefficient <span>\\(\\sigma \\)</span>. Let <span>\\(d \\geqslant n + 1,\\)</span> <span>\\({{\\varphi }_{1}}(x), \\ldots ,{{\\varphi }_{d}}(x)\\)</span> be linearly independent monomials in <span>\\(n\\)</span> variables, <span>\\({{\\varphi }_{1}}(x) \\equiv 1,\\)</span> <span>\\({{\\varphi }_{2}}(x) = {{x}_{1}}, \\ldots ,\\;{{\\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\\)</span> Put <span>\\(\\Pi : = {\\text{lin}}({{\\varphi }_{1}}, \\ldots ,{{\\varphi }_{d}}).\\)</span> The interpolation projector <span>\\(P:C(\\Omega ) \\to \\Pi \\)</span> with a set of nodes <span>\\({{x}^{{(1)}}}, \\ldots ,{{x}^{{(d)}}}\\)</span> <span>\\( \\in \\Omega \\)</span> is defined by the equalities <span>\\(Pf\\left( {{{x}^{{(j)}}}} \\right) = f\\left( {{{x}^{{(j)}}}} \\right).\\)</span> Denote by <span>\\({{\\left\\| P \\right\\|}_{\\Omega }}\\)</span> the norm of <span>\\(P\\)</span> as an operator from <span>\\(C(\\Omega )\\)</span> to <span>\\(C(\\Omega )\\)</span>. Consider the mapping <span>\\(T:{{\\mathbb{R}}^{n}} \\to {{\\mathbb{R}}^{{d - 1}}}\\)</span> of the form <span>\\(T(x): = ({{\\varphi }_{2}}(x), \\ldots ,{{\\varphi }_{d}}(x)).\\)</span> We have the following inequalities: <span>\\(\\frac{1}{2}\\left( {1 + \\frac{1}{{d - 1}}} \\right)\\left( {{{{\\left\\| P \\right\\|}}_{\\Omega }} - 1} \\right) + 1\\)</span> <span>\\( \\leqslant \\xi (T(\\Omega );S) \\leqslant \\frac{d}{2}\\left( {{{{\\left\\| P \\right\\|}}_{\\Omega }} - 1} \\right) + 1.\\)</span> Here <span>\\(S\\)</span> is the <span>\\((d - 1)\\)</span>-dimensional simplex with vertices <span>\\(T({{x}^{{(j)}}}).\\)</span> We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 7","pages":"879 - 888"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Geometric Approach to the Estimation of Interpolation Projectors\",\"authors\":\"M. V. Nevskii,&nbsp;A. Yu. Ukhalov\",\"doi\":\"10.3103/S0146411624700330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose <span>\\\\(\\\\Omega \\\\)</span> is a closed bounded subset of <span>\\\\({{\\\\mathbb{R}}^{n}},\\\\)</span> <span>\\\\(S\\\\)</span> is an <span>\\\\(n\\\\)</span>-dimensional nondegenerate simplex, <span>\\\\(\\\\xi (\\\\Omega ;S): = \\\\min \\\\left\\\\{ {\\\\sigma \\\\geqslant 1:\\\\Omega \\\\subset \\\\sigma S} \\\\right\\\\}\\\\)</span>. Here <span>\\\\(\\\\sigma S\\\\)</span> is the result of homothety of <span>\\\\(S\\\\)</span> with respect to the center of gravity with coefficient <span>\\\\(\\\\sigma \\\\)</span>. Let <span>\\\\(d \\\\geqslant n + 1,\\\\)</span> <span>\\\\({{\\\\varphi }_{1}}(x), \\\\ldots ,{{\\\\varphi }_{d}}(x)\\\\)</span> be linearly independent monomials in <span>\\\\(n\\\\)</span> variables, <span>\\\\({{\\\\varphi }_{1}}(x) \\\\equiv 1,\\\\)</span> <span>\\\\({{\\\\varphi }_{2}}(x) = {{x}_{1}}, \\\\ldots ,\\\\;{{\\\\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\\\\)</span> Put <span>\\\\(\\\\Pi : = {\\\\text{lin}}({{\\\\varphi }_{1}}, \\\\ldots ,{{\\\\varphi }_{d}}).\\\\)</span> The interpolation projector <span>\\\\(P:C(\\\\Omega ) \\\\to \\\\Pi \\\\)</span> with a set of nodes <span>\\\\({{x}^{{(1)}}}, \\\\ldots ,{{x}^{{(d)}}}\\\\)</span> <span>\\\\( \\\\in \\\\Omega \\\\)</span> is defined by the equalities <span>\\\\(Pf\\\\left( {{{x}^{{(j)}}}} \\\\right) = f\\\\left( {{{x}^{{(j)}}}} \\\\right).\\\\)</span> Denote by <span>\\\\({{\\\\left\\\\| P \\\\right\\\\|}_{\\\\Omega }}\\\\)</span> the norm of <span>\\\\(P\\\\)</span> as an operator from <span>\\\\(C(\\\\Omega )\\\\)</span> to <span>\\\\(C(\\\\Omega )\\\\)</span>. Consider the mapping <span>\\\\(T:{{\\\\mathbb{R}}^{n}} \\\\to {{\\\\mathbb{R}}^{{d - 1}}}\\\\)</span> of the form <span>\\\\(T(x): = ({{\\\\varphi }_{2}}(x), \\\\ldots ,{{\\\\varphi }_{d}}(x)).\\\\)</span> We have the following inequalities: <span>\\\\(\\\\frac{1}{2}\\\\left( {1 + \\\\frac{1}{{d - 1}}} \\\\right)\\\\left( {{{{\\\\left\\\\| P \\\\right\\\\|}}_{\\\\Omega }} - 1} \\\\right) + 1\\\\)</span> <span>\\\\( \\\\leqslant \\\\xi (T(\\\\Omega );S) \\\\leqslant \\\\frac{d}{2}\\\\left( {{{{\\\\left\\\\| P \\\\right\\\\|}}_{\\\\Omega }} - 1} \\\\right) + 1.\\\\)</span> Here <span>\\\\(S\\\\)</span> is the <span>\\\\((d - 1)\\\\)</span>-dimensional simplex with vertices <span>\\\\(T({{x}^{{(j)}}}).\\\\)</span> We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 7\",\"pages\":\"879 - 888\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

假设 \(\Omega \) 闭有界子集是 \({{\mathbb{R}}^{n}},\) \(S\) 是吗? \(n\)-维非简并单纯形, \(\xi (\Omega ;S): = \min \left\{ {\sigma \geqslant 1:\Omega \subset \sigma S} \right\}\)。这里 \(\sigma S\) 的结果是同理的吗 \(S\) 相对于重心有系数 \(\sigma \)。让 \(d \geqslant n + 1,\) \({{\varphi }_{1}}(x), \ldots ,{{\varphi }_{d}}(x)\) 是线性无关的单项式 \(n\) 变量, \({{\varphi }_{1}}(x) \equiv 1,\) \({{\varphi }_{2}}(x) = {{x}_{1}}, \ldots ,\;{{\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\) 放 \(\Pi : = {\text{lin}}({{\varphi }_{1}}, \ldots ,{{\varphi }_{d}}).\) 插值投影仪 \(P:C(\Omega ) \to \Pi \) 有一组节点 \({{x}^{{(1)}}}, \ldots ,{{x}^{{(d)}}}\) \( \in \Omega \) 是由等式定义的吗 \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) 表示为 \({{\left\| P \right\|}_{\Omega }}\) 的规范 \(P\) 作为来自 \(C(\Omega )\) 到 \(C(\Omega )\)。考虑映射 \(T:{{\mathbb{R}}^{n}} \to {{\mathbb{R}}^{{d - 1}}}\) 形式的 \(T(x): = ({{\varphi }_{2}}(x), \ldots ,{{\varphi }_{d}}(x)).\) 我们有以下不等式: \(\frac{1}{2}\left( {1 + \frac{1}{{d - 1}}} \right)\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1\) \( \leqslant \xi (T(\Omega );S) \leqslant \frac{d}{2}\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1.\) 这里 \(S\) 是? \((d - 1)\)有顶点的-维单纯形 \(T({{x}^{{(j)}}}).\) 讨论了在段上连续函数的多项式插值的这一关系式和其他关系式。给出了数值分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a Geometric Approach to the Estimation of Interpolation Projectors

On a Geometric Approach to the Estimation of Interpolation Projectors

Suppose \(\Omega \) is a closed bounded subset of \({{\mathbb{R}}^{n}},\) \(S\) is an \(n\)-dimensional nondegenerate simplex, \(\xi (\Omega ;S): = \min \left\{ {\sigma \geqslant 1:\Omega \subset \sigma S} \right\}\). Here \(\sigma S\) is the result of homothety of \(S\) with respect to the center of gravity with coefficient \(\sigma \). Let \(d \geqslant n + 1,\) \({{\varphi }_{1}}(x), \ldots ,{{\varphi }_{d}}(x)\) be linearly independent monomials in \(n\) variables, \({{\varphi }_{1}}(x) \equiv 1,\) \({{\varphi }_{2}}(x) = {{x}_{1}}, \ldots ,\;{{\varphi }_{{n + 1}}}(x) = {{x}_{n}}.\) Put \(\Pi : = {\text{lin}}({{\varphi }_{1}}, \ldots ,{{\varphi }_{d}}).\) The interpolation projector \(P:C(\Omega ) \to \Pi \) with a set of nodes \({{x}^{{(1)}}}, \ldots ,{{x}^{{(d)}}}\) \( \in \Omega \) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right).\) Denote by \({{\left\| P \right\|}_{\Omega }}\) the norm of \(P\) as an operator from \(C(\Omega )\) to \(C(\Omega )\). Consider the mapping \(T:{{\mathbb{R}}^{n}} \to {{\mathbb{R}}^{{d - 1}}}\) of the form \(T(x): = ({{\varphi }_{2}}(x), \ldots ,{{\varphi }_{d}}(x)).\) We have the following inequalities: \(\frac{1}{2}\left( {1 + \frac{1}{{d - 1}}} \right)\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1\) \( \leqslant \xi (T(\Omega );S) \leqslant \frac{d}{2}\left( {{{{\left\| P \right\|}}_{\Omega }} - 1} \right) + 1.\) Here \(S\) is the \((d - 1)\)-dimensional simplex with vertices \(T({{x}^{{(j)}}}).\) We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信