受欢迎的室友在指数时间

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Telikepalli Kavitha
{"title":"受欢迎的室友在指数时间","authors":"Telikepalli Kavitha","doi":"10.1007/s00453-024-01287-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the popular matching problem in a <i>roommates</i> instance <i>G</i> on <i>n</i> vertices, i.e., <i>G</i> is a graph where each vertex has a strict preference order over its neighbors. A matching <i>M</i> is <i>popular</i> if there is no matching <i>N</i> such that the vertices that prefer <i>N</i> to <i>M</i> outnumber those that prefer <i>M</i> to <i>N</i>. It is known that it is NP-hard to decide if <i>G</i> admits a popular matching or not. There is no better algorithm known for this problem than the brute force algorithm that enumerates all matchings and tests each for popularity—this could take <i>n</i>! time. Here we show an <span>\\(O^*(k^n)\\)</span> time algorithm for this problem, where <span>\\(k &lt; 7.32\\)</span>. We use the recent breakthrough result on the maximum number of stable matchings possible in a roommates instance to analyze our algorithm for the popular matching problem. We identify a natural (also, hard) subclass of popular matchings called <i>truly popular</i> matchings that are “popular fractional” and show an <span>\\(O^*(2^n)\\)</span> time algorithm for the truly popular matching problem in <i>G</i>. We also identify a subclass of max-size popular matchings called <i>super-dominant</i> matchings and show a linear time algorithm for the super-dominant roommates problem.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 2","pages":"292 - 320"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01287-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Popular Roommates in Simply Exponential Time\",\"authors\":\"Telikepalli Kavitha\",\"doi\":\"10.1007/s00453-024-01287-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the popular matching problem in a <i>roommates</i> instance <i>G</i> on <i>n</i> vertices, i.e., <i>G</i> is a graph where each vertex has a strict preference order over its neighbors. A matching <i>M</i> is <i>popular</i> if there is no matching <i>N</i> such that the vertices that prefer <i>N</i> to <i>M</i> outnumber those that prefer <i>M</i> to <i>N</i>. It is known that it is NP-hard to decide if <i>G</i> admits a popular matching or not. There is no better algorithm known for this problem than the brute force algorithm that enumerates all matchings and tests each for popularity—this could take <i>n</i>! time. Here we show an <span>\\\\(O^*(k^n)\\\\)</span> time algorithm for this problem, where <span>\\\\(k &lt; 7.32\\\\)</span>. We use the recent breakthrough result on the maximum number of stable matchings possible in a roommates instance to analyze our algorithm for the popular matching problem. We identify a natural (also, hard) subclass of popular matchings called <i>truly popular</i> matchings that are “popular fractional” and show an <span>\\\\(O^*(2^n)\\\\)</span> time algorithm for the truly popular matching problem in <i>G</i>. We also identify a subclass of max-size popular matchings called <i>super-dominant</i> matchings and show a linear time algorithm for the super-dominant roommates problem.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"87 2\",\"pages\":\"292 - 320\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-024-01287-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-024-01287-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01287-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在n个顶点上的室友实例G中流行的匹配问题,即,G是一个图,其中每个顶点对其邻居具有严格的优先顺序。如果不存在匹配N,使得倾向于N而不是M的顶点多于倾向于M而不是N的顶点,那么匹配M就是流行的。众所周知,决定G是否允许流行匹配是np困难的。对于这个问题,没有比蛮力算法更好的算法了,蛮力算法枚举所有匹配并测试每个匹配的受欢迎程度——这可能需要n个时间!时间。这里我们展示了用于此问题的\(O^*(k^n)\)时间算法,其中\(k < 7.32\)。我们使用最近关于室友实例中可能的最大稳定匹配数的突破性结果来分析我们对流行匹配问题的算法。我们确定了流行匹配的一个自然(也是困难的)子类,称为真正流行的匹配,它是“流行分数”,并展示了g中真正流行的匹配问题的\(O^*(2^n)\)时间算法。我们还确定了最大规模的流行匹配的一个子类,称为超优势匹配,并展示了超优势室友问题的线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Popular Roommates in Simply Exponential Time

We consider the popular matching problem in a roommates instance G on n vertices, i.e., G is a graph where each vertex has a strict preference order over its neighbors. A matching M is popular if there is no matching N such that the vertices that prefer N to M outnumber those that prefer M to N. It is known that it is NP-hard to decide if G admits a popular matching or not. There is no better algorithm known for this problem than the brute force algorithm that enumerates all matchings and tests each for popularity—this could take n! time. Here we show an \(O^*(k^n)\) time algorithm for this problem, where \(k < 7.32\). We use the recent breakthrough result on the maximum number of stable matchings possible in a roommates instance to analyze our algorithm for the popular matching problem. We identify a natural (also, hard) subclass of popular matchings called truly popular matchings that are “popular fractional” and show an \(O^*(2^n)\) time algorithm for the truly popular matching problem in G. We also identify a subclass of max-size popular matchings called super-dominant matchings and show a linear time algorithm for the super-dominant roommates problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信