使用大型语言模型从多孔有机笼文献中发现知识†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaoyi Su, Siyuan Yang, Yuanhan Liu, Aiting Kai, Linjiang Chen and Ming Liu
{"title":"使用大型语言模型从多孔有机笼文献中发现知识†","authors":"Yaoyi Su, Siyuan Yang, Yuanhan Liu, Aiting Kai, Linjiang Chen and Ming Liu","doi":"10.1039/D4DD00337C","DOIUrl":null,"url":null,"abstract":"<p >Porous organic cages (POCs) are an emerging subclass of porous materials, drawing increasing attention due to their structural tunability, modularity and processibility, with the research in this area rapidly expanding. Nevertheless, it is a time-consuming and labour-intensive process to obtain sufficient information from the extensive literature on organic molecular cages. This article presents a GPT-4-based literature reading method that incorporates multi-label text classification and a follow-up information extraction, in which the potential of GPT-4 can be fully exploited to rapidly extract valid information from the literature. In the process of multi-label text classification, the prompt-engineered GPT-4 demonstrated the ability to label text with proper recall rates according to the type of information contained in the text, including authors, affiliations, synthetic procedures, surface area, and the Cambridge Crystallographic Data Centre (CCDC) number of corresponding cages. Additionally, GPT-4 demonstrated proficiency in information extraction, effectively transforming labeled text into concise tabulated data. Furthermore, we built a chatbot based on this database, allowing for quick and comprehensive searching across the entire database and responding to cage-related questions.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 403-410"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00337c?page=search","citationCount":"0","resultStr":"{\"title\":\"Knowledge discovery from porous organic cage literature using a large language model†\",\"authors\":\"Yaoyi Su, Siyuan Yang, Yuanhan Liu, Aiting Kai, Linjiang Chen and Ming Liu\",\"doi\":\"10.1039/D4DD00337C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Porous organic cages (POCs) are an emerging subclass of porous materials, drawing increasing attention due to their structural tunability, modularity and processibility, with the research in this area rapidly expanding. Nevertheless, it is a time-consuming and labour-intensive process to obtain sufficient information from the extensive literature on organic molecular cages. This article presents a GPT-4-based literature reading method that incorporates multi-label text classification and a follow-up information extraction, in which the potential of GPT-4 can be fully exploited to rapidly extract valid information from the literature. In the process of multi-label text classification, the prompt-engineered GPT-4 demonstrated the ability to label text with proper recall rates according to the type of information contained in the text, including authors, affiliations, synthetic procedures, surface area, and the Cambridge Crystallographic Data Centre (CCDC) number of corresponding cages. Additionally, GPT-4 demonstrated proficiency in information extraction, effectively transforming labeled text into concise tabulated data. Furthermore, we built a chatbot based on this database, allowing for quick and comprehensive searching across the entire database and responding to cage-related questions.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 2\",\"pages\":\" 403-410\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00337c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00337c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00337c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多孔有机笼(POCs)是一种新兴的多孔材料亚类,因其结构的可调节性、模块化和可加工性而受到越来越多的关注,研究领域也在迅速扩大。然而,从大量关于有机分子笼的文献中获得足够的信息是一个耗时和劳动密集型的过程。本文提出了一种基于GPT-4的文献阅读方法,该方法结合了多标签文本分类和后续信息提取,可以充分利用GPT-4的潜力,从文献中快速提取有效信息。在多标签文本分类过程中,提示工程GPT-4显示了根据文本中包含的信息类型(包括作者、隶属关系、合成程序、表面积和相应的剑桥晶体数据中心(CCDC)相应的笼号)以适当的召回率标记文本的能力。此外,GPT-4显示了信息提取的熟练程度,有效地将标记文本转换为简洁的表格数据。此外,我们基于这个数据库构建了一个聊天机器人,允许在整个数据库中进行快速和全面的搜索,并回答与笼子相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Knowledge discovery from porous organic cage literature using a large language model†

Knowledge discovery from porous organic cage literature using a large language model†

Porous organic cages (POCs) are an emerging subclass of porous materials, drawing increasing attention due to their structural tunability, modularity and processibility, with the research in this area rapidly expanding. Nevertheless, it is a time-consuming and labour-intensive process to obtain sufficient information from the extensive literature on organic molecular cages. This article presents a GPT-4-based literature reading method that incorporates multi-label text classification and a follow-up information extraction, in which the potential of GPT-4 can be fully exploited to rapidly extract valid information from the literature. In the process of multi-label text classification, the prompt-engineered GPT-4 demonstrated the ability to label text with proper recall rates according to the type of information contained in the text, including authors, affiliations, synthetic procedures, surface area, and the Cambridge Crystallographic Data Centre (CCDC) number of corresponding cages. Additionally, GPT-4 demonstrated proficiency in information extraction, effectively transforming labeled text into concise tabulated data. Furthermore, we built a chatbot based on this database, allowing for quick and comprehensive searching across the entire database and responding to cage-related questions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信