基于蛋白质语言模型的蛋白质化学位移预测新方法[j]

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
He Zhu, Lingyue Hu, Yu Yang and Zhong Chen
{"title":"基于蛋白质语言模型的蛋白质化学位移预测新方法[j]","authors":"He Zhu, Lingyue Hu, Yu Yang and Zhong Chen","doi":"10.1039/D4DD00367E","DOIUrl":null,"url":null,"abstract":"<p >Chemical shifts are crucial parameters in protein Nuclear Magnetic Resonance (NMR) experiments. Specifically, the chemical shifts of backbone atoms are essential for determining the constraints in protein structure analysis. Despite their importance, protein NMR experiments are costly and spectral analysis presents challenges due to sample impurities, complex experimental environments, and spectral overlap. Here, we propose a chemical shift prediction method that requires only protein sequences as input. This low-cost chemical shift predictor provides a chemical shift corresponding to each backbone atom, offers valuable prior information for peak assignment, and can significantly aid protein NMR spectrum analysis. Our approach leverages recent advances in pre-trained protein language models (PLMs) and employs a deep learning model to obtain chemical shifts. Different from other chemical shift prediction programs, our method does not require protein structures as input, significantly reducing costs and enhancing robustness. Our method can achieve comparable accuracy to other existing programs that require protein structures as input. In summary, this work introduces a novel method for protein chemical shift prediction and demonstrates the potential of PLMs for diverse applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 331-337"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00367e?page=search","citationCount":"0","resultStr":"{\"title\":\"A novel approach to protein chemical shift prediction from sequences using a protein language model†\",\"authors\":\"He Zhu, Lingyue Hu, Yu Yang and Zhong Chen\",\"doi\":\"10.1039/D4DD00367E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemical shifts are crucial parameters in protein Nuclear Magnetic Resonance (NMR) experiments. Specifically, the chemical shifts of backbone atoms are essential for determining the constraints in protein structure analysis. Despite their importance, protein NMR experiments are costly and spectral analysis presents challenges due to sample impurities, complex experimental environments, and spectral overlap. Here, we propose a chemical shift prediction method that requires only protein sequences as input. This low-cost chemical shift predictor provides a chemical shift corresponding to each backbone atom, offers valuable prior information for peak assignment, and can significantly aid protein NMR spectrum analysis. Our approach leverages recent advances in pre-trained protein language models (PLMs) and employs a deep learning model to obtain chemical shifts. Different from other chemical shift prediction programs, our method does not require protein structures as input, significantly reducing costs and enhancing robustness. Our method can achieve comparable accuracy to other existing programs that require protein structures as input. In summary, this work introduces a novel method for protein chemical shift prediction and demonstrates the potential of PLMs for diverse applications.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 2\",\"pages\":\" 331-337\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00367e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00367e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00367e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学位移是蛋白质核磁共振实验的重要参数。具体来说,主链原子的化学位移对于确定蛋白质结构分析中的约束条件至关重要。尽管它们很重要,但蛋白质核磁共振实验成本高,光谱分析由于样品杂质、复杂的实验环境和光谱重叠而面临挑战。在这里,我们提出了一种只需要蛋白质序列作为输入的化学位移预测方法。这种低成本的化学位移预测器提供了每个主链原子对应的化学位移,为峰分配提供了有价值的先验信息,并且可以显着帮助蛋白质NMR谱分析。我们的方法利用了预训练蛋白质语言模型(PLMs)的最新进展,并采用深度学习模型来获取化学位移。与其他化学位移预测程序不同,我们的方法不需要蛋白质结构作为输入,显著降低了成本并增强了鲁棒性。我们的方法可以达到与其他需要蛋白质结构作为输入的现有程序相当的精度。总之,这项工作介绍了一种新的蛋白质化学位移预测方法,并展示了PLMs在各种应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel approach to protein chemical shift prediction from sequences using a protein language model†

A novel approach to protein chemical shift prediction from sequences using a protein language model†

Chemical shifts are crucial parameters in protein Nuclear Magnetic Resonance (NMR) experiments. Specifically, the chemical shifts of backbone atoms are essential for determining the constraints in protein structure analysis. Despite their importance, protein NMR experiments are costly and spectral analysis presents challenges due to sample impurities, complex experimental environments, and spectral overlap. Here, we propose a chemical shift prediction method that requires only protein sequences as input. This low-cost chemical shift predictor provides a chemical shift corresponding to each backbone atom, offers valuable prior information for peak assignment, and can significantly aid protein NMR spectrum analysis. Our approach leverages recent advances in pre-trained protein language models (PLMs) and employs a deep learning model to obtain chemical shifts. Different from other chemical shift prediction programs, our method does not require protein structures as input, significantly reducing costs and enhancing robustness. Our method can achieve comparable accuracy to other existing programs that require protein structures as input. In summary, this work introduces a novel method for protein chemical shift prediction and demonstrates the potential of PLMs for diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信