粘性不确定不可压缩Navier-Stokes方程的多项式混沌灵敏度分析

IF 2.5 3区 工程技术 Q2 MECHANICS
N. Nouaime , B. Després , M.A. Puscas , C. Fiorini
{"title":"粘性不确定不可压缩Navier-Stokes方程的多项式混沌灵敏度分析","authors":"N. Nouaime ,&nbsp;B. Després ,&nbsp;M.A. Puscas ,&nbsp;C. Fiorini","doi":"10.1016/j.euromechflu.2025.01.012","DOIUrl":null,"url":null,"abstract":"<div><div>We present a stability estimate for the sensitivity of the incompressible Navier–Stokes equations under uncertainty in model parameters such as viscosity and initial or boundary conditions. The approach employs the stochastic Galerkin method, wherein the solution is represented using a generalized polynomial chaos expansion. The governing equations are projected onto stochastic basis functions, resulting in an extended coupled equation system. These coupled equations are challenging to solve numerically. A decoupling method is proposed to simplify their numerical resolution, which, along with the stability estimates, represents one of this study’s most valuable and original aspects. Finally, we present the lid-driven cavity numerical test to evaluate the polynomial chaos method and compare the solutions with the numerical data published in the literature.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 308-318"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis for incompressible Navier–Stokes equations with uncertain viscosity using polynomial chaos method\",\"authors\":\"N. Nouaime ,&nbsp;B. Després ,&nbsp;M.A. Puscas ,&nbsp;C. Fiorini\",\"doi\":\"10.1016/j.euromechflu.2025.01.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a stability estimate for the sensitivity of the incompressible Navier–Stokes equations under uncertainty in model parameters such as viscosity and initial or boundary conditions. The approach employs the stochastic Galerkin method, wherein the solution is represented using a generalized polynomial chaos expansion. The governing equations are projected onto stochastic basis functions, resulting in an extended coupled equation system. These coupled equations are challenging to solve numerically. A decoupling method is proposed to simplify their numerical resolution, which, along with the stability estimates, represents one of this study’s most valuable and original aspects. Finally, we present the lid-driven cavity numerical test to evaluate the polynomial chaos method and compare the solutions with the numerical data published in the literature.</div></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"111 \",\"pages\":\"Pages 308-318\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754625000123\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000123","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了不可压缩Navier-Stokes方程在不确定模型参数(如粘度和初始或边界条件)下灵敏度的稳定性估计。该方法采用随机伽辽金方法,其解用广义多项式混沌展开表示。将控制方程投影到随机基函数上,得到一个扩展的耦合方程系统。这些耦合方程很难用数值方法求解。提出了一种解耦方法来简化它们的数值分辨率,这与稳定性估计一起代表了本研究最有价值和最原始的方面之一。最后,我们提出了一个盖驱动腔的数值试验来评估多项式混沌方法,并将其解与文献中发表的数值数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis for incompressible Navier–Stokes equations with uncertain viscosity using polynomial chaos method
We present a stability estimate for the sensitivity of the incompressible Navier–Stokes equations under uncertainty in model parameters such as viscosity and initial or boundary conditions. The approach employs the stochastic Galerkin method, wherein the solution is represented using a generalized polynomial chaos expansion. The governing equations are projected onto stochastic basis functions, resulting in an extended coupled equation system. These coupled equations are challenging to solve numerically. A decoupling method is proposed to simplify their numerical resolution, which, along with the stability estimates, represents one of this study’s most valuable and original aspects. Finally, we present the lid-driven cavity numerical test to evaluate the polynomial chaos method and compare the solutions with the numerical data published in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信