通过氧空位工程突破Li4Ti5O12阳极的容量极限

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan
{"title":"通过氧空位工程突破Li4Ti5O12阳极的容量极限","authors":"Jianjun Fang ,&nbsp;Kunchen Xie ,&nbsp;Yongli Song ,&nbsp;Kangyi Zhang ,&nbsp;Fei Xu ,&nbsp;Xiaoze Shi ,&nbsp;Ming Ren ,&nbsp;Minzhi Zhan ,&nbsp;Hai Lin ,&nbsp;Luyi Yang ,&nbsp;Shunning Li ,&nbsp;Feng Pan","doi":"10.1016/j.cjsc.2024.100504","DOIUrl":null,"url":null,"abstract":"<div><div>The zero-strain spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> stands out as a promising anode material for lithium-ion batteries due to its outstanding cycling stability. However, the limited theoretic specific capacity, low Li<sup>+</sup> diffusion coefficient and electronic conductivity severely hinder its practical application. In this study, we demonstrate a strategy of introducing abundant oxygen vacancies not only on the surface and but also inside the bulk of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> particles via reductive thermal sintering. The oxygen vacancies can significantly enhance the electronic conductivity and lithium-ion diffusion coefficient of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, leading to a remarkable improvement in rate performance and a reduction in polarization. Moreover, additional lithium-ion accommodation sites can be created at the defective surface, contributing to a high specific capacity of over 200 mAh g<sup>−1</sup>.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 2","pages":"Article 100504"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering\",\"authors\":\"Jianjun Fang ,&nbsp;Kunchen Xie ,&nbsp;Yongli Song ,&nbsp;Kangyi Zhang ,&nbsp;Fei Xu ,&nbsp;Xiaoze Shi ,&nbsp;Ming Ren ,&nbsp;Minzhi Zhan ,&nbsp;Hai Lin ,&nbsp;Luyi Yang ,&nbsp;Shunning Li ,&nbsp;Feng Pan\",\"doi\":\"10.1016/j.cjsc.2024.100504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The zero-strain spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> stands out as a promising anode material for lithium-ion batteries due to its outstanding cycling stability. However, the limited theoretic specific capacity, low Li<sup>+</sup> diffusion coefficient and electronic conductivity severely hinder its practical application. In this study, we demonstrate a strategy of introducing abundant oxygen vacancies not only on the surface and but also inside the bulk of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> particles via reductive thermal sintering. The oxygen vacancies can significantly enhance the electronic conductivity and lithium-ion diffusion coefficient of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, leading to a remarkable improvement in rate performance and a reduction in polarization. Moreover, additional lithium-ion accommodation sites can be created at the defective surface, contributing to a high specific capacity of over 200 mAh g<sup>−1</sup>.</div></div>\",\"PeriodicalId\":10151,\"journal\":{\"name\":\"结构化学\",\"volume\":\"44 2\",\"pages\":\"Article 100504\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结构化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254586124003866\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003866","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

零应变尖晶石Li4Ti5O12因其出色的循环稳定性而成为锂离子电池极具前景的负极材料。但其理论比容量有限、Li+扩散系数低、电导率低等问题严重阻碍了其实际应用。在这项研究中,我们展示了一种通过还原热烧结在Li4Ti5O12颗粒表面和内部引入丰富氧空位的策略。氧空位可以显著提高Li4Ti5O12的电子导电性和锂离子扩散系数,从而显著提高速率性能和降低极化。此外,可以在缺陷表面产生额外的锂离子容纳位点,从而产生超过200 mAh g−1的高比容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering

Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering
The zero-strain spinel Li4Ti5O12 stands out as a promising anode material for lithium-ion batteries due to its outstanding cycling stability. However, the limited theoretic specific capacity, low Li+ diffusion coefficient and electronic conductivity severely hinder its practical application. In this study, we demonstrate a strategy of introducing abundant oxygen vacancies not only on the surface and but also inside the bulk of Li4Ti5O12 particles via reductive thermal sintering. The oxygen vacancies can significantly enhance the electronic conductivity and lithium-ion diffusion coefficient of Li4Ti5O12, leading to a remarkable improvement in rate performance and a reduction in polarization. Moreover, additional lithium-ion accommodation sites can be created at the defective surface, contributing to a high specific capacity of over 200 mAh g−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信