新型超混沌系统:音频加密的实现

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Shuang Zhou , Yanli Yin , Uğur Erkan , Abdurrahim Toktas , Yingqian Zhang
{"title":"新型超混沌系统:音频加密的实现","authors":"Shuang Zhou ,&nbsp;Yanli Yin ,&nbsp;Uğur Erkan ,&nbsp;Abdurrahim Toktas ,&nbsp;Yingqian Zhang","doi":"10.1016/j.chaos.2025.116088","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome the limitations of existing low-dimensional chaotic systems, particularly their vulnerability to degradation, this study introduces a novel family of discrete hyper-chaotic systems, designed using a one-dimensional quadratic map. The dynamic behavior of the systems is analysed using Lyapunov exponents and sample entropy to evaluate their complexity and robustness. The results demonstrate that the proposed systems exhibit higher ergodicity, greater Lyapunov exponents and better randomness compared to existing chaotic systems. Exploiting these systems, a novel fractal K-means audio encryption (FKM-AE) algorithm is proposed, integrating fractal algorithms with the K-means grouping approach. Simulations reveal that the proposed method effectively reduces the correlation of audio messages across adjacent time intervals and robustly resists various attacks, demonstrating its high performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"193 ","pages":"Article 116088"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel hyperchaotic system: Implementation to audio encryption\",\"authors\":\"Shuang Zhou ,&nbsp;Yanli Yin ,&nbsp;Uğur Erkan ,&nbsp;Abdurrahim Toktas ,&nbsp;Yingqian Zhang\",\"doi\":\"10.1016/j.chaos.2025.116088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To overcome the limitations of existing low-dimensional chaotic systems, particularly their vulnerability to degradation, this study introduces a novel family of discrete hyper-chaotic systems, designed using a one-dimensional quadratic map. The dynamic behavior of the systems is analysed using Lyapunov exponents and sample entropy to evaluate their complexity and robustness. The results demonstrate that the proposed systems exhibit higher ergodicity, greater Lyapunov exponents and better randomness compared to existing chaotic systems. Exploiting these systems, a novel fractal K-means audio encryption (FKM-AE) algorithm is proposed, integrating fractal algorithms with the K-means grouping approach. Simulations reveal that the proposed method effectively reduces the correlation of audio messages across adjacent time intervals and robustly resists various attacks, demonstrating its high performance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"193 \",\"pages\":\"Article 116088\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925001018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了克服现有低维混沌系统的局限性,特别是其易退化性,本研究引入了一种新的离散超混沌系统族,使用一维二次映射设计。利用李雅普诺夫指数和样本熵分析了系统的动态行为,评价了系统的复杂性和鲁棒性。结果表明,与现有混沌系统相比,该系统具有更高的遍历性、更大的李雅普诺夫指数和更好的随机性。利用这些系统,提出了一种新的分形k均值音频加密算法(FKM-AE),将分形算法与k均值分组方法相结合。仿真结果表明,该方法有效地降低了音频信息在相邻时间间隔间的相关性,并对各种攻击具有鲁棒性,证明了该方法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel hyperchaotic system: Implementation to audio encryption
To overcome the limitations of existing low-dimensional chaotic systems, particularly their vulnerability to degradation, this study introduces a novel family of discrete hyper-chaotic systems, designed using a one-dimensional quadratic map. The dynamic behavior of the systems is analysed using Lyapunov exponents and sample entropy to evaluate their complexity and robustness. The results demonstrate that the proposed systems exhibit higher ergodicity, greater Lyapunov exponents and better randomness compared to existing chaotic systems. Exploiting these systems, a novel fractal K-means audio encryption (FKM-AE) algorithm is proposed, integrating fractal algorithms with the K-means grouping approach. Simulations reveal that the proposed method effectively reduces the correlation of audio messages across adjacent time intervals and robustly resists various attacks, demonstrating its high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信