土工格室加筋级配骨料在列车荷载作用下的力学行为:基于室内试验和DEM

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Rongwei Fan , Junjie Huang , Yanfei Pei , Zhichao Huang , Haokun Zhang , Zongyu Zhang , Aibo Luo , Qian Su
{"title":"土工格室加筋级配骨料在列车荷载作用下的力学行为:基于室内试验和DEM","authors":"Rongwei Fan ,&nbsp;Junjie Huang ,&nbsp;Yanfei Pei ,&nbsp;Zhichao Huang ,&nbsp;Haokun Zhang ,&nbsp;Zongyu Zhang ,&nbsp;Aibo Luo ,&nbsp;Qian Su","doi":"10.1016/j.trgeo.2025.101514","DOIUrl":null,"url":null,"abstract":"<div><div>Usually, a graded-aggregates layer with a given thickness is laid between a rigid subgrade (box subgrade, pile-plank subgrade) and a ballastless track structure. Such a configuration is realized to achieve features such as dynamic buffering, vibration reduction, energy dissipation, and limitation of uneven settlement. Geocells are typically used to reinforce the graded aggregates layer by enhancing its strength and stiffness. A dynamic test device was independently developed to investigate the mechanical behavior of geocell-reinforced graded aggregates under train loading. The test device can simulate the cyclic train loading and lateral confining pressure on graded aggregates. Subsequently, a comparative test of graded aggregates with geocell and without geocell was carried out by using the device. The above said experiments were simulated by a 3D discrete-element approach that considered the actual shape of the graded aggregate particles. The macroscopic mechanical property changes of graded aggregate under train loads were analyzed from microscopic behaviors such as particle contact and particle migration. This study is intended to provide a basis for optimizing and improving the dynamic performance and evaluation of the ballastless track sandwich subgrade with an upper rigid layer, a middle flexible layer, and a lower rigid layer during long-term service.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101514"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical behaviors of the geocell reinforced graded aggregates under train loading: Based on Indoor tests and DEM\",\"authors\":\"Rongwei Fan ,&nbsp;Junjie Huang ,&nbsp;Yanfei Pei ,&nbsp;Zhichao Huang ,&nbsp;Haokun Zhang ,&nbsp;Zongyu Zhang ,&nbsp;Aibo Luo ,&nbsp;Qian Su\",\"doi\":\"10.1016/j.trgeo.2025.101514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Usually, a graded-aggregates layer with a given thickness is laid between a rigid subgrade (box subgrade, pile-plank subgrade) and a ballastless track structure. Such a configuration is realized to achieve features such as dynamic buffering, vibration reduction, energy dissipation, and limitation of uneven settlement. Geocells are typically used to reinforce the graded aggregates layer by enhancing its strength and stiffness. A dynamic test device was independently developed to investigate the mechanical behavior of geocell-reinforced graded aggregates under train loading. The test device can simulate the cyclic train loading and lateral confining pressure on graded aggregates. Subsequently, a comparative test of graded aggregates with geocell and without geocell was carried out by using the device. The above said experiments were simulated by a 3D discrete-element approach that considered the actual shape of the graded aggregate particles. The macroscopic mechanical property changes of graded aggregate under train loads were analyzed from microscopic behaviors such as particle contact and particle migration. This study is intended to provide a basis for optimizing and improving the dynamic performance and evaluation of the ballastless track sandwich subgrade with an upper rigid layer, a middle flexible layer, and a lower rigid layer during long-term service.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"51 \",\"pages\":\"Article 101514\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225000339\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000339","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

通常,在刚性路基(箱形路基、桩板路基)和无砟轨道结构之间铺设一定厚度的级配骨料层。这样的配置实现了动态缓冲、减振、耗能、限制不均匀沉降等特性。土工格室通常用于通过提高其强度和刚度来加固级配骨料层。为研究土工格室加筋级配骨料在列车荷载作用下的力学性能,自行研制了动力试验装置。试验装置可以模拟分级集料的循环列车荷载和侧向围压。随后,利用该装置对有土工格室和无土工格室的级配骨料进行了对比试验。上述实验是通过考虑级配骨料颗粒实际形状的三维离散元方法模拟的。从颗粒接触和颗粒迁移等微观行为分析了级配骨料在列车荷载作用下的宏观力学性能变化。本研究旨在为优化和改善上刚性层、中柔性层、下刚性层的无砟轨道夹层路基在长期服役期间的动力性能及评价提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical behaviors of the geocell reinforced graded aggregates under train loading: Based on Indoor tests and DEM
Usually, a graded-aggregates layer with a given thickness is laid between a rigid subgrade (box subgrade, pile-plank subgrade) and a ballastless track structure. Such a configuration is realized to achieve features such as dynamic buffering, vibration reduction, energy dissipation, and limitation of uneven settlement. Geocells are typically used to reinforce the graded aggregates layer by enhancing its strength and stiffness. A dynamic test device was independently developed to investigate the mechanical behavior of geocell-reinforced graded aggregates under train loading. The test device can simulate the cyclic train loading and lateral confining pressure on graded aggregates. Subsequently, a comparative test of graded aggregates with geocell and without geocell was carried out by using the device. The above said experiments were simulated by a 3D discrete-element approach that considered the actual shape of the graded aggregate particles. The macroscopic mechanical property changes of graded aggregate under train loads were analyzed from microscopic behaviors such as particle contact and particle migration. This study is intended to provide a basis for optimizing and improving the dynamic performance and evaluation of the ballastless track sandwich subgrade with an upper rigid layer, a middle flexible layer, and a lower rigid layer during long-term service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信