独立指标和的迭代和单对数规律,及其在Ginibre点过程和Karlin占用方案中的应用

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Dariusz Buraczewski , Alexander Iksanov , Valeriya Kotelnikova
{"title":"独立指标和的迭代和单对数规律,及其在Ginibre点过程和Karlin占用方案中的应用","authors":"Dariusz Buraczewski ,&nbsp;Alexander Iksanov ,&nbsp;Valeriya Kotelnikova","doi":"10.1016/j.spa.2025.104597","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a law of the iterated logarithm (LIL) for an infinite sum of independent indicators parameterized by <span><math><mi>t</mi></math></span> and monotone in <span><math><mi>t</mi></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. It is shown that if the expectation <span><math><mi>b</mi></math></span> and the variance <span><math><mi>a</mi></math></span> of the sum are comparable, then the normalization in the LIL includes the iterated logarithm of <span><math><mi>a</mi></math></span>. If the expectation grows faster than the variance, while the ratio <span><math><mrow><mo>log</mo><mi>b</mi><mo>/</mo><mo>log</mo><mi>a</mi></mrow></math></span> remains bounded, then the normalization in the LIL includes the single logarithm of <span><math><mi>a</mi></math></span> (so that the LIL becomes a law of the single logarithm). Applications of our result are given to the number of points of the infinite Ginibre point process in a disk and the number of occupied boxes and related quantities in Karlin’s occupancy scheme.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"183 ","pages":"Article 104597"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laws of the iterated and single logarithm for sums of independent indicators, with applications to the Ginibre point process and Karlin’s occupancy scheme\",\"authors\":\"Dariusz Buraczewski ,&nbsp;Alexander Iksanov ,&nbsp;Valeriya Kotelnikova\",\"doi\":\"10.1016/j.spa.2025.104597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a law of the iterated logarithm (LIL) for an infinite sum of independent indicators parameterized by <span><math><mi>t</mi></math></span> and monotone in <span><math><mi>t</mi></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. It is shown that if the expectation <span><math><mi>b</mi></math></span> and the variance <span><math><mi>a</mi></math></span> of the sum are comparable, then the normalization in the LIL includes the iterated logarithm of <span><math><mi>a</mi></math></span>. If the expectation grows faster than the variance, while the ratio <span><math><mrow><mo>log</mo><mi>b</mi><mo>/</mo><mo>log</mo><mi>a</mi></mrow></math></span> remains bounded, then the normalization in the LIL includes the single logarithm of <span><math><mi>a</mi></math></span> (so that the LIL becomes a law of the single logarithm). Applications of our result are given to the number of points of the infinite Ginibre point process in a disk and the number of occupied boxes and related quantities in Karlin’s occupancy scheme.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"183 \",\"pages\":\"Article 104597\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000389\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在t→∞时,证明了由t参数化且t单调的独立指标无穷和的一个迭代对数定律。结果表明,如果和的期望b和方差a具有可比性,则LIL中的归一化包括a的迭代对数。如果期望增长快于方差,而logb/loga的比值保持有界,则LIL中的归一化包括a的单对数(使LIL成为单对数定律)。将所得结果应用于圆盘上无限Ginibre点过程的点数和Karlin占位方案中的占位盒数及相关量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laws of the iterated and single logarithm for sums of independent indicators, with applications to the Ginibre point process and Karlin’s occupancy scheme
We prove a law of the iterated logarithm (LIL) for an infinite sum of independent indicators parameterized by t and monotone in t as t. It is shown that if the expectation b and the variance a of the sum are comparable, then the normalization in the LIL includes the iterated logarithm of a. If the expectation grows faster than the variance, while the ratio logb/loga remains bounded, then the normalization in the LIL includes the single logarithm of a (so that the LIL becomes a law of the single logarithm). Applications of our result are given to the number of points of the infinite Ginibre point process in a disk and the number of occupied boxes and related quantities in Karlin’s occupancy scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信