傅里叶级数在具有扁圆原生质的CR3BP中测试粒子动力学中的应用

IF 2.8 3区 工程技术 Q2 MECHANICS
Om Prakash Meena , Manas Lohani , Soham Sen , Deepesh Mishra , Rajiv Aggarwal
{"title":"傅里叶级数在具有扁圆原生质的CR3BP中测试粒子动力学中的应用","authors":"Om Prakash Meena ,&nbsp;Manas Lohani ,&nbsp;Soham Sen ,&nbsp;Deepesh Mishra ,&nbsp;Rajiv Aggarwal","doi":"10.1016/j.ijnonlinmec.2025.105030","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into periodic orbits within the circular restricted three-body problem (CR3BP), where a negligible mass orbits under the gravitational pull of two primary bodies. Specifically, we examine the dynamics of the third body in the CR3BP with an oblate larger primary. We determine periodic orbits around the libration points, accounting for the oblate spheroidal shape of the larger primary, using the Fourier series method. We analyze both short and long periodic orbits, presenting variational graphs to depict changes in the period <span><math><mi>T</mi></math></span> of the orbits. Furthermore, we investigate how oblateness and mass parameters affect the dimensions and periods of the periodic orbits.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"172 ","pages":"Article 105030"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Fourier series to the dynamics of a test particle in the CR3BP with an oblate primary\",\"authors\":\"Om Prakash Meena ,&nbsp;Manas Lohani ,&nbsp;Soham Sen ,&nbsp;Deepesh Mishra ,&nbsp;Rajiv Aggarwal\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study delves into periodic orbits within the circular restricted three-body problem (CR3BP), where a negligible mass orbits under the gravitational pull of two primary bodies. Specifically, we examine the dynamics of the third body in the CR3BP with an oblate larger primary. We determine periodic orbits around the libration points, accounting for the oblate spheroidal shape of the larger primary, using the Fourier series method. We analyze both short and long periodic orbits, presenting variational graphs to depict changes in the period <span><math><mi>T</mi></math></span> of the orbits. Furthermore, we investigate how oblateness and mass parameters affect the dimensions and periods of the periodic orbits.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"172 \",\"pages\":\"Article 105030\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225000186\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000186","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究深入研究了圆形受限三体问题(CR3BP)中的周期轨道,其中可以忽略不计的质量在两个主要物体的引力作用下运行。具体来说,我们研究了CR3BP中具有扁圆较大原发体的第三个体的动力学。我们使用傅立叶级数方法确定围绕振动点的周期轨道,考虑到较大原星的扁球体形状。我们分析了短周期轨道和长周期轨道,用变分图来描述轨道周期T的变化。此外,我们研究了扁率和质量参数如何影响周期轨道的尺寸和周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Fourier series to the dynamics of a test particle in the CR3BP with an oblate primary
This study delves into periodic orbits within the circular restricted three-body problem (CR3BP), where a negligible mass orbits under the gravitational pull of two primary bodies. Specifically, we examine the dynamics of the third body in the CR3BP with an oblate larger primary. We determine periodic orbits around the libration points, accounting for the oblate spheroidal shape of the larger primary, using the Fourier series method. We analyze both short and long periodic orbits, presenting variational graphs to depict changes in the period T of the orbits. Furthermore, we investigate how oblateness and mass parameters affect the dimensions and periods of the periodic orbits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信