推导的脱钩水平和有限维度

IF 1.5 1区 数学 Q1 MATHEMATICS
Ruoyu Guo, Kiyoshi Igusa
{"title":"推导的脱钩水平和有限维度","authors":"Ruoyu Guo,&nbsp;Kiyoshi Igusa","doi":"10.1016/j.aim.2025.110152","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop new ideas regarding the finitistic dimension conjecture, or the findim conjecture for short. Specifically, we improve upon the delooping level by introducing three new invariants called the effective delooping level edell, the sub-derived delooping level <span><math><mrow><mi>sub</mi></mrow><mtext>-</mtext><mrow><mi>ddell</mi></mrow></math></span>, and the derived delooping level ddell. They are all better upper bounds for the opposite Findim. Precisely, we prove<span><span><span><math><mrow><mi>Findim</mi></mrow><mspace></mspace><msup><mrow><mi>Λ</mi></mrow><mrow><mi>op</mi></mrow></msup><mo>=</mo><mrow><mi>edell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>≤</mo><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mspace></mspace><mo>(</mo><mtext>or </mtext><mrow><mi>sub</mi></mrow><mtext>-</mtext><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>)</mo><mo>≤</mo><mrow><mi>dell</mi></mrow><mspace></mspace><mi>Λ</mi></math></span></span></span> and provide examples where the last inequality is strict (including the recent example from <span><span>[16]</span></span> where <span><math><mrow><mi>dell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>=</mo><mo>∞</mo></math></span>, but <span><math><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>=</mo><mn>1</mn><mo>=</mo><mrow><mi>Findim</mi></mrow><mspace></mspace><msup><mrow><mi>Λ</mi></mrow><mrow><mi>op</mi></mrow></msup></math></span>).</div><div>We further enhance the connection between the findim conjecture and tilting theory by showing finitely generated modules with finite derived delooping level form a torsion-free class <span><math><mi>F</mi></math></span>. Therefore, studying the corresponding torsion pair <span><math><mo>(</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> will shed more light on the little finitistic dimension. Lastly, we relate the delooping level to the <em>ϕ</em>-dimension <em>ϕ</em>dim, a popular upper bound for findim, and recover a sufficient condition for the findim conjecture given in <span><span>[5]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"464 ","pages":"Article 110152"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derived delooping levels and finitistic dimension\",\"authors\":\"Ruoyu Guo,&nbsp;Kiyoshi Igusa\",\"doi\":\"10.1016/j.aim.2025.110152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we develop new ideas regarding the finitistic dimension conjecture, or the findim conjecture for short. Specifically, we improve upon the delooping level by introducing three new invariants called the effective delooping level edell, the sub-derived delooping level <span><math><mrow><mi>sub</mi></mrow><mtext>-</mtext><mrow><mi>ddell</mi></mrow></math></span>, and the derived delooping level ddell. They are all better upper bounds for the opposite Findim. Precisely, we prove<span><span><span><math><mrow><mi>Findim</mi></mrow><mspace></mspace><msup><mrow><mi>Λ</mi></mrow><mrow><mi>op</mi></mrow></msup><mo>=</mo><mrow><mi>edell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>≤</mo><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mspace></mspace><mo>(</mo><mtext>or </mtext><mrow><mi>sub</mi></mrow><mtext>-</mtext><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>)</mo><mo>≤</mo><mrow><mi>dell</mi></mrow><mspace></mspace><mi>Λ</mi></math></span></span></span> and provide examples where the last inequality is strict (including the recent example from <span><span>[16]</span></span> where <span><math><mrow><mi>dell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>=</mo><mo>∞</mo></math></span>, but <span><math><mrow><mi>ddell</mi></mrow><mspace></mspace><mi>Λ</mi><mo>=</mo><mn>1</mn><mo>=</mo><mrow><mi>Findim</mi></mrow><mspace></mspace><msup><mrow><mi>Λ</mi></mrow><mrow><mi>op</mi></mrow></msup></math></span>).</div><div>We further enhance the connection between the findim conjecture and tilting theory by showing finitely generated modules with finite derived delooping level form a torsion-free class <span><math><mi>F</mi></math></span>. Therefore, studying the corresponding torsion pair <span><math><mo>(</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> will shed more light on the little finitistic dimension. Lastly, we relate the delooping level to the <em>ϕ</em>-dimension <em>ϕ</em>dim, a popular upper bound for findim, and recover a sufficient condition for the findim conjecture given in <span><span>[5]</span></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"464 \",\"pages\":\"Article 110152\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000507\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000507","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derived delooping levels and finitistic dimension
In this paper, we develop new ideas regarding the finitistic dimension conjecture, or the findim conjecture for short. Specifically, we improve upon the delooping level by introducing three new invariants called the effective delooping level edell, the sub-derived delooping level sub-ddell, and the derived delooping level ddell. They are all better upper bounds for the opposite Findim. Precisely, we proveFindimΛop=edellΛddellΛ(or sub-ddellΛ)dellΛ and provide examples where the last inequality is strict (including the recent example from [16] where dellΛ=, but ddellΛ=1=FindimΛop).
We further enhance the connection between the findim conjecture and tilting theory by showing finitely generated modules with finite derived delooping level form a torsion-free class F. Therefore, studying the corresponding torsion pair (T,F) will shed more light on the little finitistic dimension. Lastly, we relate the delooping level to the ϕ-dimension ϕdim, a popular upper bound for findim, and recover a sufficient condition for the findim conjecture given in [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信