模拟平面阳极上的锂沉积:颗粒储层的作用及枝晶生长对电流密度分布的影响

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Paula V. Saravia, C. Andrea Calderón, Ezequiel P. M. Leiva and S. Alexis Paz*, 
{"title":"模拟平面阳极上的锂沉积:颗粒储层的作用及枝晶生长对电流密度分布的影响","authors":"Paula V. Saravia,&nbsp;C. Andrea Calderón,&nbsp;Ezequiel P. M. Leiva and S. Alexis Paz*,&nbsp;","doi":"10.1021/acs.jpcc.4c0688310.1021/acs.jpcc.4c06883","DOIUrl":null,"url":null,"abstract":"<p >In this work, we developed a computational model of lithium deposition on planar electrodes. With this model, we simulated several chronoamperometry experiments considering different deposition probabilities, i.e., cell overpotentials. Since the planar geometry induces an ion concentration gradient profile that continues to evolve toward the bulk electrolyte, we studied the influence of the lithium reservoir and rationalized its role in the real system. The solid electrolyte interface is conceptualized as a thin layer whose thickness determines the ion diffusion profile. Additionally, the impact of dendrite formations on electrode roughness and current density profiles was analyzed by comparison with test simulations, assuming inhibited dendrite growth. By presenting current density profiles in quantitatively meaningful units, our work narrows the gap for further comparison with experimental measurements. The utility of our simulations for determining the electrode area in lithium metal batteries is addressed.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 6","pages":"3218–3225 3218–3225"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Lithium Deposition on Planar Anode: The Role of Particle Reservoir and the Influence of Dendrite Growth on Current Density Profiles\",\"authors\":\"Paula V. Saravia,&nbsp;C. Andrea Calderón,&nbsp;Ezequiel P. M. Leiva and S. Alexis Paz*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0688310.1021/acs.jpcc.4c06883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, we developed a computational model of lithium deposition on planar electrodes. With this model, we simulated several chronoamperometry experiments considering different deposition probabilities, i.e., cell overpotentials. Since the planar geometry induces an ion concentration gradient profile that continues to evolve toward the bulk electrolyte, we studied the influence of the lithium reservoir and rationalized its role in the real system. The solid electrolyte interface is conceptualized as a thin layer whose thickness determines the ion diffusion profile. Additionally, the impact of dendrite formations on electrode roughness and current density profiles was analyzed by comparison with test simulations, assuming inhibited dendrite growth. By presenting current density profiles in quantitatively meaningful units, our work narrows the gap for further comparison with experimental measurements. The utility of our simulations for determining the electrode area in lithium metal batteries is addressed.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 6\",\"pages\":\"3218–3225 3218–3225\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06883\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06883","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们建立了一个平面电极上锂沉积的计算模型。利用该模型,我们模拟了几种考虑不同沉积概率(即电池过电位)的计时电流测定实验。由于平面几何结构导致离子浓度梯度剖面继续向大块电解质演化,我们研究了锂储层的影响,并合理化了其在实际体系中的作用。固体电解质界面被概念化为一个薄层,其厚度决定了离子扩散剖面。此外,假设树突生长受到抑制,通过与测试模拟对比,分析了树突形成对电极粗糙度和电流密度分布的影响。通过以定量有意义的单位呈现电流密度分布,我们的工作缩小了与实验测量进一步比较的差距。讨论了我们的模拟在确定锂金属电池电极面积方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulating Lithium Deposition on Planar Anode: The Role of Particle Reservoir and the Influence of Dendrite Growth on Current Density Profiles

Simulating Lithium Deposition on Planar Anode: The Role of Particle Reservoir and the Influence of Dendrite Growth on Current Density Profiles

In this work, we developed a computational model of lithium deposition on planar electrodes. With this model, we simulated several chronoamperometry experiments considering different deposition probabilities, i.e., cell overpotentials. Since the planar geometry induces an ion concentration gradient profile that continues to evolve toward the bulk electrolyte, we studied the influence of the lithium reservoir and rationalized its role in the real system. The solid electrolyte interface is conceptualized as a thin layer whose thickness determines the ion diffusion profile. Additionally, the impact of dendrite formations on electrode roughness and current density profiles was analyzed by comparison with test simulations, assuming inhibited dendrite growth. By presenting current density profiles in quantitatively meaningful units, our work narrows the gap for further comparison with experimental measurements. The utility of our simulations for determining the electrode area in lithium metal batteries is addressed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信