{"title":"通过自组装金属-有机框架的约束转化产生voronoi型细胞膜","authors":"Xiangyun Xi, Longfei Lv, Xiaoli Gong, Zhebin Zhang, Yifan Gao, Yan Xia, Siyu Wan, Xuesong Wu, Hushui Chen, Dong Yang, Yuwen Zeng, Hongyuan Sheng, Tongtao Li, Angang Dong","doi":"10.1021/jacs.4c17866","DOIUrl":null,"url":null,"abstract":"The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal–organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid–air interface, driven by the Marangoni effect. Subsequent Ni<sup>2+</sup>-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"7 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of Voronoi-Patterned Cellular Membranes via Confinement Transformation of Self-Assembled Metal–Organic Frameworks\",\"authors\":\"Xiangyun Xi, Longfei Lv, Xiaoli Gong, Zhebin Zhang, Yifan Gao, Yan Xia, Siyu Wan, Xuesong Wu, Hushui Chen, Dong Yang, Yuwen Zeng, Hongyuan Sheng, Tongtao Li, Angang Dong\",\"doi\":\"10.1021/jacs.4c17866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal–organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid–air interface, driven by the Marangoni effect. Subsequent Ni<sup>2+</sup>-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c17866\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17866","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergence of Voronoi-Patterned Cellular Membranes via Confinement Transformation of Self-Assembled Metal–Organic Frameworks
The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal–organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid–air interface, driven by the Marangoni effect. Subsequent Ni2+-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.