Wes Bonifay, Li Cai, Carl F Falk, Kristopher J Preacher
{"title":"重新评估因子模型的拟合倾向。","authors":"Wes Bonifay, Li Cai, Carl F Falk, Kristopher J Preacher","doi":"10.1037/met0000735","DOIUrl":null,"url":null,"abstract":"<p><p>Model complexity is a critical consideration when evaluating a statistical model. To quantify complexity, one can examine fitting propensity (FP), or the ability of the model to fit well to diverse patterns of data. The scant foundational research on FP has focused primarily on proof of concept rather than practical application. To address this oversight, the present work joins a recently published study in examining the FP of models that are commonly applied in factor analysis. We begin with a historical account of statistical model evaluation, which refutes the notion that complexity can be fully understood by counting the number of free parameters in the model. We then present three sets of analytic examples to better understand the FP of exploratory and confirmatory factor analysis models that are widely used in applied research. We characterize our findings relative to previously disseminated claims about factor model FP. Finally, we provide some recommendations for future research on FP in latent variable modeling. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reassessing the fitting propensity of factor models.\",\"authors\":\"Wes Bonifay, Li Cai, Carl F Falk, Kristopher J Preacher\",\"doi\":\"10.1037/met0000735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Model complexity is a critical consideration when evaluating a statistical model. To quantify complexity, one can examine fitting propensity (FP), or the ability of the model to fit well to diverse patterns of data. The scant foundational research on FP has focused primarily on proof of concept rather than practical application. To address this oversight, the present work joins a recently published study in examining the FP of models that are commonly applied in factor analysis. We begin with a historical account of statistical model evaluation, which refutes the notion that complexity can be fully understood by counting the number of free parameters in the model. We then present three sets of analytic examples to better understand the FP of exploratory and confirmatory factor analysis models that are widely used in applied research. We characterize our findings relative to previously disseminated claims about factor model FP. Finally, we provide some recommendations for future research on FP in latent variable modeling. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000735\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000735","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在评估统计模型时,模型复杂性是一个重要的考虑因素。为了量化复杂性,可以检查拟合倾向(FP),或者模型适合不同数据模式的能力。关于计划生育的基础研究很少,主要集中在概念的证明而不是实际应用。为了解决这一疏忽,目前的工作加入了最近发表的一项研究,研究了因子分析中常用的模型的FP。我们从统计模型评估的历史描述开始,它驳斥了通过计算模型中自由参数的数量可以完全理解复杂性的概念。然后,我们提出了三组分析实例,以更好地理解在应用研究中广泛使用的探索性和验证性因素分析模型的FP。我们描述了我们的研究结果相对于先前传播的关于因子模型FP的主张。最后,对潜在变量模型中FP的未来研究提出了建议。(PsycInfo Database Record (c) 2025 APA,版权所有)。
Reassessing the fitting propensity of factor models.
Model complexity is a critical consideration when evaluating a statistical model. To quantify complexity, one can examine fitting propensity (FP), or the ability of the model to fit well to diverse patterns of data. The scant foundational research on FP has focused primarily on proof of concept rather than practical application. To address this oversight, the present work joins a recently published study in examining the FP of models that are commonly applied in factor analysis. We begin with a historical account of statistical model evaluation, which refutes the notion that complexity can be fully understood by counting the number of free parameters in the model. We then present three sets of analytic examples to better understand the FP of exploratory and confirmatory factor analysis models that are widely used in applied research. We characterize our findings relative to previously disseminated claims about factor model FP. Finally, we provide some recommendations for future research on FP in latent variable modeling. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.