{"title":"phi系数与单维指数H之间的关系:从根本上改善心理尺度。","authors":"Johannes Titz","doi":"10.1037/met0000736","DOIUrl":null,"url":null,"abstract":"<p><p>To study the dimensional structure of psychological phenomena, a precise definition of unidimensionality is essential. Most definitions of unidimensionality rely on factor analysis. However, the reliability of factor analysis depends on the input data, which primarily consists of Pearson correlations. A significant issue with Pearson correlations is that they are almost guaranteed to underestimate unidimensionality, rendering them unsuitable for evaluating the unidimensionality of a scale. This article formally demonstrates that the simple unidimensionality index <i>H</i> is always at least as high as, or higher than, the Pearson correlation for dichotomous and polytomous items (φ). Leveraging this inequality, a case is presented where five dichotomous items are perfectly unidimensional, yet factor analysis based on φ incorrectly suggests a two-dimensional solution. To illustrate that this issue extends beyond theoretical scenarios, an analysis of real data from a statistics exam (<i>N</i> = 133) is conducted, revealing the same problem. An in-depth analysis of the exam data shows that violations of unidimensionality are systematic and should not be dismissed as mere noise. Inconsistent answering patterns can indicate whether a participant blundered, cheated, or has conceptual misunderstandings, information typically overlooked by traditional scaling procedures based on correlations. The conclusion is that psychologists should consider unidimensionality not as a peripheral concern but as the foundation for any serious scaling attempt. The index <i>H</i> could play a crucial role in establishing this foundation. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationship between the phi coefficient and the unidimensionality index H: Improving psychological scaling from the ground up.\",\"authors\":\"Johannes Titz\",\"doi\":\"10.1037/met0000736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the dimensional structure of psychological phenomena, a precise definition of unidimensionality is essential. Most definitions of unidimensionality rely on factor analysis. However, the reliability of factor analysis depends on the input data, which primarily consists of Pearson correlations. A significant issue with Pearson correlations is that they are almost guaranteed to underestimate unidimensionality, rendering them unsuitable for evaluating the unidimensionality of a scale. This article formally demonstrates that the simple unidimensionality index <i>H</i> is always at least as high as, or higher than, the Pearson correlation for dichotomous and polytomous items (φ). Leveraging this inequality, a case is presented where five dichotomous items are perfectly unidimensional, yet factor analysis based on φ incorrectly suggests a two-dimensional solution. To illustrate that this issue extends beyond theoretical scenarios, an analysis of real data from a statistics exam (<i>N</i> = 133) is conducted, revealing the same problem. An in-depth analysis of the exam data shows that violations of unidimensionality are systematic and should not be dismissed as mere noise. Inconsistent answering patterns can indicate whether a participant blundered, cheated, or has conceptual misunderstandings, information typically overlooked by traditional scaling procedures based on correlations. The conclusion is that psychologists should consider unidimensionality not as a peripheral concern but as the foundation for any serious scaling attempt. The index <i>H</i> could play a crucial role in establishing this foundation. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000736\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000736","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了研究心理现象的维度结构,一个精确的单维性定义是必不可少的。大多数单维性的定义依赖于因子分析。然而,因子分析的可靠性取决于输入数据,而输入数据主要由Pearson相关性组成。皮尔逊相关性的一个重要问题是,它们几乎肯定会低估单维性,使它们不适用于评估量表的单维性。本文正式证明了简单单维指数H总是至少等于或高于二分类和多分类项目(φ)的Pearson相关。利用这个不等式,给出了一个案例,其中五个二分项目完全是一维的,但基于φ的因子分析错误地提出了二维解决方案。为了说明这个问题超出了理论范围,对统计考试(N = 133)的真实数据进行了分析,揭示了同样的问题。对考试数据的深入分析表明,违反单维性是系统的,不应被视为纯粹的噪音。不一致的回答模式可以表明参与者是否犯了错误,作弊或有概念上的误解,这些信息通常被基于相关性的传统缩放程序所忽视。由此得出的结论是,心理学家不应将单维性视为次要问题,而应将其视为任何严肃的尺度尝试的基础。H指数可以在建立这一基础方面发挥关键作用。(PsycInfo Database Record (c) 2025 APA,版权所有)。
The relationship between the phi coefficient and the unidimensionality index H: Improving psychological scaling from the ground up.
To study the dimensional structure of psychological phenomena, a precise definition of unidimensionality is essential. Most definitions of unidimensionality rely on factor analysis. However, the reliability of factor analysis depends on the input data, which primarily consists of Pearson correlations. A significant issue with Pearson correlations is that they are almost guaranteed to underestimate unidimensionality, rendering them unsuitable for evaluating the unidimensionality of a scale. This article formally demonstrates that the simple unidimensionality index H is always at least as high as, or higher than, the Pearson correlation for dichotomous and polytomous items (φ). Leveraging this inequality, a case is presented where five dichotomous items are perfectly unidimensional, yet factor analysis based on φ incorrectly suggests a two-dimensional solution. To illustrate that this issue extends beyond theoretical scenarios, an analysis of real data from a statistics exam (N = 133) is conducted, revealing the same problem. An in-depth analysis of the exam data shows that violations of unidimensionality are systematic and should not be dismissed as mere noise. Inconsistent answering patterns can indicate whether a participant blundered, cheated, or has conceptual misunderstandings, information typically overlooked by traditional scaling procedures based on correlations. The conclusion is that psychologists should consider unidimensionality not as a peripheral concern but as the foundation for any serious scaling attempt. The index H could play a crucial role in establishing this foundation. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.