使用机器学习模型预测聚合物溶解的适当温度和压力。

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Dorsa Dadashi, Marjan Kaedi, Parsa Dadashi, Suprakas Sinha Ray
{"title":"使用机器学习模型预测聚合物溶解的适当温度和压力。","authors":"Dorsa Dadashi, Marjan Kaedi, Parsa Dadashi, Suprakas Sinha Ray","doi":"10.1002/minf.202400193","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of polymer solutions in the chemical industry poses a significant challenge in determining optimal dissolution conditions. Traditionally, researchers have relied on experimental methods to estimate the processing parameters needed to dissolve polymers, often requiring numerous iterations of testing different temperatures and pressures. This approach is both costly and time-consuming. In this study, for the first time, we present a machine learning-based approach to predict the minimum temperature and pressure required for polymer dissolution, correlating molecular weight and chemical structure of both the polymer and solvent and its weight percent. Using a dataset compiled from existing literature, which includes key factors influencing polymer dissolution, we also extracted chemical bond information from the molecular structures of polymer-solvent systems. Six different machine learning algorithms, including linear regression, k-nearest neighbors, regression trees, random forests, multilayer perceptron neural networks, and support vector regression, were employed to develop predictive models. Among these, the Random Forest model achieved the highest accuracy, with R<sup>2</sup> values of 0.931 and 0.942 for temperature and pressure predictions, respectively. This novel approach eliminates the need for repetitive experimental testing, offering a more efficient pathway to determining dissolution conditions.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400193"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the Appropriate Temperature and Pressure for Polymer Dissolution Using Machine Learning Models.\",\"authors\":\"Dorsa Dadashi, Marjan Kaedi, Parsa Dadashi, Suprakas Sinha Ray\",\"doi\":\"10.1002/minf.202400193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread use of polymer solutions in the chemical industry poses a significant challenge in determining optimal dissolution conditions. Traditionally, researchers have relied on experimental methods to estimate the processing parameters needed to dissolve polymers, often requiring numerous iterations of testing different temperatures and pressures. This approach is both costly and time-consuming. In this study, for the first time, we present a machine learning-based approach to predict the minimum temperature and pressure required for polymer dissolution, correlating molecular weight and chemical structure of both the polymer and solvent and its weight percent. Using a dataset compiled from existing literature, which includes key factors influencing polymer dissolution, we also extracted chemical bond information from the molecular structures of polymer-solvent systems. Six different machine learning algorithms, including linear regression, k-nearest neighbors, regression trees, random forests, multilayer perceptron neural networks, and support vector regression, were employed to develop predictive models. Among these, the Random Forest model achieved the highest accuracy, with R<sup>2</sup> values of 0.931 and 0.942 for temperature and pressure predictions, respectively. This novel approach eliminates the need for repetitive experimental testing, offering a more efficient pathway to determining dissolution conditions.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"44 2\",\"pages\":\"e202400193\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202400193\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物溶液在化学工业中的广泛应用对确定最佳溶解条件提出了重大挑战。传统上,研究人员依靠实验方法来估计溶解聚合物所需的工艺参数,通常需要多次重复测试不同的温度和压力。这种方法既昂贵又耗时。在这项研究中,我们首次提出了一种基于机器学习的方法来预测聚合物溶解所需的最低温度和压力,将聚合物和溶剂的分子量和化学结构及其重量百分比相关联。利用现有文献汇编的数据集,包括影响聚合物溶解的关键因素,我们还从聚合物溶剂体系的分子结构中提取了化学键信息。六种不同的机器学习算法,包括线性回归、k近邻、回归树、随机森林、多层感知器神经网络和支持向量回归,被用于开发预测模型。其中Random Forest模型的预测精度最高,预测温度和压力的R2分别为0.931和0.942。这种新颖的方法消除了重复实验测试的需要,为确定溶解条件提供了更有效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Appropriate Temperature and Pressure for Polymer Dissolution Using Machine Learning Models.

The widespread use of polymer solutions in the chemical industry poses a significant challenge in determining optimal dissolution conditions. Traditionally, researchers have relied on experimental methods to estimate the processing parameters needed to dissolve polymers, often requiring numerous iterations of testing different temperatures and pressures. This approach is both costly and time-consuming. In this study, for the first time, we present a machine learning-based approach to predict the minimum temperature and pressure required for polymer dissolution, correlating molecular weight and chemical structure of both the polymer and solvent and its weight percent. Using a dataset compiled from existing literature, which includes key factors influencing polymer dissolution, we also extracted chemical bond information from the molecular structures of polymer-solvent systems. Six different machine learning algorithms, including linear regression, k-nearest neighbors, regression trees, random forests, multilayer perceptron neural networks, and support vector regression, were employed to develop predictive models. Among these, the Random Forest model achieved the highest accuracy, with R2 values of 0.931 and 0.942 for temperature and pressure predictions, respectively. This novel approach eliminates the need for repetitive experimental testing, offering a more efficient pathway to determining dissolution conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信