瘦素抵抗与心脏代谢疾病:连接分子途径、遗传变异和治疗创新。

IF 2.2 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Prashanjit Roy, Rishi Kant, Amandeep Kaur, Hardik Kumar, Ranjeet Kumar
{"title":"瘦素抵抗与心脏代谢疾病:连接分子途径、遗传变异和治疗创新。","authors":"Prashanjit Roy, Rishi Kant, Amandeep Kaur, Hardik Kumar, Ranjeet Kumar","doi":"10.2174/011573403X356019250118170444","DOIUrl":null,"url":null,"abstract":"<p><p>Leptin, a hormone produced by fat cells, is crucial for regulating energy equilibrium, managing body mass, and influencing metabolic and cardiovascular well-being. Leptin decreases appetite, boosts energy usage, and has a significant impact on glucose metabolism by primarily activating the JAK2/STAT3 signaling pathway in the hypothalamus. Obesity leads to the development of leptin resistance, which is marked by high levels of leptin in the bloodstream and a decreased responsiveness to its signals. This leads to increased food consumption, weight gain, and metabolic issues, such as type 2 diabetes (T2DM) and cardiovascular disease (CVD). This study explores the many roles of leptin in metabolic regulation, with a specific emphasis on its interaction with insulin and its impact on peripheral organs like the pancreas, liver, and muscles. Leptin resistance worsens chronic inflammation, oxidative stress, endothelial dysfunction, and insulin resistance, all of which are strongly linked to the development of cardiovascular disease (CVD). Moreover, there is a correlation between genetic variations in the leptin receptor (LEPR) gene and a higher susceptibility to stroke and other cardiovascular issues. Therapeutic interventions, such as leptin replacement therapy, have demonstrated potential in the treatment of congenital leptin insufficiency and lipodystrophy while also enhancing glycaemic control, lipid profiles, and neuroendocrine function. Recent studies have indicated that manipulating leptin levels or enhancing its responsiveness by specific treatments, such as chemical chaperones and inhibitors of negative regulators like SOCS3 and PTP1B, might potentially restore the efficacy of leptin.</p>","PeriodicalId":10832,"journal":{"name":"Current Cardiology Reviews","volume":" ","pages":"52-67"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307987/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leptin Resistance and Cardiometabolic Disorders: Bridging Molecular Pathways, Genetic Variants, and Therapeutic Innovation.\",\"authors\":\"Prashanjit Roy, Rishi Kant, Amandeep Kaur, Hardik Kumar, Ranjeet Kumar\",\"doi\":\"10.2174/011573403X356019250118170444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leptin, a hormone produced by fat cells, is crucial for regulating energy equilibrium, managing body mass, and influencing metabolic and cardiovascular well-being. Leptin decreases appetite, boosts energy usage, and has a significant impact on glucose metabolism by primarily activating the JAK2/STAT3 signaling pathway in the hypothalamus. Obesity leads to the development of leptin resistance, which is marked by high levels of leptin in the bloodstream and a decreased responsiveness to its signals. This leads to increased food consumption, weight gain, and metabolic issues, such as type 2 diabetes (T2DM) and cardiovascular disease (CVD). This study explores the many roles of leptin in metabolic regulation, with a specific emphasis on its interaction with insulin and its impact on peripheral organs like the pancreas, liver, and muscles. Leptin resistance worsens chronic inflammation, oxidative stress, endothelial dysfunction, and insulin resistance, all of which are strongly linked to the development of cardiovascular disease (CVD). Moreover, there is a correlation between genetic variations in the leptin receptor (LEPR) gene and a higher susceptibility to stroke and other cardiovascular issues. Therapeutic interventions, such as leptin replacement therapy, have demonstrated potential in the treatment of congenital leptin insufficiency and lipodystrophy while also enhancing glycaemic control, lipid profiles, and neuroendocrine function. Recent studies have indicated that manipulating leptin levels or enhancing its responsiveness by specific treatments, such as chemical chaperones and inhibitors of negative regulators like SOCS3 and PTP1B, might potentially restore the efficacy of leptin.</p>\",\"PeriodicalId\":10832,\"journal\":{\"name\":\"Current Cardiology Reviews\",\"volume\":\" \",\"pages\":\"52-67\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307987/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Cardiology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/011573403X356019250118170444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011573403X356019250118170444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

瘦素是一种由脂肪细胞产生的激素,对调节能量平衡、控制体重、影响新陈代谢和心血管健康至关重要。瘦素降低食欲,增加能量消耗,并通过激活下丘脑的JAK2/STAT3信号通路对葡萄糖代谢产生重大影响。肥胖会导致瘦素抵抗,其特征是血液中瘦素水平高,对其信号的反应能力下降。这导致食物消耗增加、体重增加和代谢问题,如2型糖尿病(T2DM)和心血管疾病(CVD)。本研究探讨了瘦素在代谢调节中的许多作用,特别强调了它与胰岛素的相互作用及其对胰腺、肝脏和肌肉等外周器官的影响。瘦素抵抗会加重慢性炎症、氧化应激、内皮功能障碍和胰岛素抵抗,所有这些都与心血管疾病(CVD)的发展密切相关。此外,瘦素受体(LEPR)基因的遗传变异与中风和其他心血管疾病的易感性之间存在相关性。治疗干预,如瘦素替代疗法,已经证明在治疗先天性瘦素不足和脂肪营养不良方面具有潜力,同时还能增强血糖控制、脂质谱和神经内分泌功能。最近的研究表明,通过特定的治疗,如化学伴侣和负调节因子如SOCS3和PTP1B的抑制剂,控制瘦素水平或增强其反应性,可能潜在地恢复瘦素的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leptin Resistance and Cardiometabolic Disorders: Bridging Molecular Pathways, Genetic Variants, and Therapeutic Innovation.

Leptin, a hormone produced by fat cells, is crucial for regulating energy equilibrium, managing body mass, and influencing metabolic and cardiovascular well-being. Leptin decreases appetite, boosts energy usage, and has a significant impact on glucose metabolism by primarily activating the JAK2/STAT3 signaling pathway in the hypothalamus. Obesity leads to the development of leptin resistance, which is marked by high levels of leptin in the bloodstream and a decreased responsiveness to its signals. This leads to increased food consumption, weight gain, and metabolic issues, such as type 2 diabetes (T2DM) and cardiovascular disease (CVD). This study explores the many roles of leptin in metabolic regulation, with a specific emphasis on its interaction with insulin and its impact on peripheral organs like the pancreas, liver, and muscles. Leptin resistance worsens chronic inflammation, oxidative stress, endothelial dysfunction, and insulin resistance, all of which are strongly linked to the development of cardiovascular disease (CVD). Moreover, there is a correlation between genetic variations in the leptin receptor (LEPR) gene and a higher susceptibility to stroke and other cardiovascular issues. Therapeutic interventions, such as leptin replacement therapy, have demonstrated potential in the treatment of congenital leptin insufficiency and lipodystrophy while also enhancing glycaemic control, lipid profiles, and neuroendocrine function. Recent studies have indicated that manipulating leptin levels or enhancing its responsiveness by specific treatments, such as chemical chaperones and inhibitors of negative regulators like SOCS3 and PTP1B, might potentially restore the efficacy of leptin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Cardiology Reviews
Current Cardiology Reviews CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.70
自引率
10.50%
发文量
117
期刊介绍: Current Cardiology Reviews publishes frontier reviews of high quality on all the latest advances on the practical and clinical approach to the diagnosis and treatment of cardiovascular disease. All relevant areas are covered by the journal including arrhythmia, congestive heart failure, cardiomyopathy, congenital heart disease, drugs, methodology, pacing, and preventive cardiology. The journal is essential reading for all researchers and clinicians in cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信