使用超极化氙-129肺磁共振成像模拟全肺和区域一氧化碳肺转移因子的框架。

IF 4.3 3区 医学 Q1 RESPIRATORY SYSTEM
ERJ Open Research Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.1183/23120541.00442-2024
Jemima H Pilgrim-Morris, Laurie J Smith, Helen Marshall, Bilal A Tahir, Guilhem J Collier, Neil J Stewart, Jim M Wild
{"title":"使用超极化氙-129肺磁共振成像模拟全肺和区域一氧化碳肺转移因子的框架。","authors":"Jemima H Pilgrim-Morris, Laurie J Smith, Helen Marshall, Bilal A Tahir, Guilhem J Collier, Neil J Stewart, Jim M Wild","doi":"10.1183/23120541.00442-2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary gas exchange is assessed by the transfer factor of the lungs (<i>T</i> <sub>L</sub>) for carbon monoxide (<i>T</i> <sub>LCO</sub>), and can also be measured with inhaled xenon-129 (<sup>129</sup>Xe) magnetic resonance imaging (MRI). A model has been proposed to estimate <i>T</i> <sub>L</sub> from <sup>129</sup>Xe MRI metrics, but this approach has not been fully validated and does not utilise the spatial information provided by three-dimensional <sup>129</sup>Xe MRI.</p><p><strong>Methods: </strong>Three models for predicting <i>T</i> <sub>L</sub> from <sup>129</sup>Xe MRI metrics were compared: 1) a previously-published physiology-based model, 2) multivariable linear regression and 3) random forest regression. Models were trained on data from 150 patients with asthma and/or COPD. The random forest model was applied voxel-wise to <sup>129</sup>Xe images to yield regional <i>T</i> <sub>L</sub> maps.</p><p><strong>Results: </strong>Coefficients of the physiological model were found to differ from previously reported values. All models had good prediction accuracy with small mean absolute error (MAE): 1) 1.24±0.15 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>, 2) 1.01±0.06 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>, 3) 0.995±0.129 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>. The random forest model performed well when applied to a validation group of post-COVID-19 patients and healthy volunteers (MAE=0.840 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>), suggesting good generalisability. The feasibility of producing regional maps of predicted <i>T</i> <sub>L</sub> was demonstrated and the whole-lung sum of the <i>T</i> <sub>L</sub> maps agreed with measured <i>T</i> <sub>LCO</sub> (MAE=1.18 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>).</p><p><strong>Conclusion: </strong>The best prediction of <i>T</i> <sub>LCO</sub> from <sup>129</sup>Xe MRI metrics was with a random forest regression framework. Applying this model on a voxel-wise level to create parametric <i>T</i> <sub>L</sub> maps provides a useful tool for regional visualisation and clinical interpretation of <sup>129</sup>Xe gas exchange MRI.</p>","PeriodicalId":11739,"journal":{"name":"ERJ Open Research","volume":"11 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808933/pdf/","citationCount":"0","resultStr":"{\"title\":\"A framework for modelling whole-lung and regional transfer factor of the lung for carbon monoxide using hyperpolarised xenon-129 lung magnetic resonance imaging.\",\"authors\":\"Jemima H Pilgrim-Morris, Laurie J Smith, Helen Marshall, Bilal A Tahir, Guilhem J Collier, Neil J Stewart, Jim M Wild\",\"doi\":\"10.1183/23120541.00442-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pulmonary gas exchange is assessed by the transfer factor of the lungs (<i>T</i> <sub>L</sub>) for carbon monoxide (<i>T</i> <sub>LCO</sub>), and can also be measured with inhaled xenon-129 (<sup>129</sup>Xe) magnetic resonance imaging (MRI). A model has been proposed to estimate <i>T</i> <sub>L</sub> from <sup>129</sup>Xe MRI metrics, but this approach has not been fully validated and does not utilise the spatial information provided by three-dimensional <sup>129</sup>Xe MRI.</p><p><strong>Methods: </strong>Three models for predicting <i>T</i> <sub>L</sub> from <sup>129</sup>Xe MRI metrics were compared: 1) a previously-published physiology-based model, 2) multivariable linear regression and 3) random forest regression. Models were trained on data from 150 patients with asthma and/or COPD. The random forest model was applied voxel-wise to <sup>129</sup>Xe images to yield regional <i>T</i> <sub>L</sub> maps.</p><p><strong>Results: </strong>Coefficients of the physiological model were found to differ from previously reported values. All models had good prediction accuracy with small mean absolute error (MAE): 1) 1.24±0.15 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>, 2) 1.01±0.06 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>, 3) 0.995±0.129 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>. The random forest model performed well when applied to a validation group of post-COVID-19 patients and healthy volunteers (MAE=0.840 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>), suggesting good generalisability. The feasibility of producing regional maps of predicted <i>T</i> <sub>L</sub> was demonstrated and the whole-lung sum of the <i>T</i> <sub>L</sub> maps agreed with measured <i>T</i> <sub>LCO</sub> (MAE=1.18 mmol·min<sup>-1</sup>·kPa<sup>-1</sup>).</p><p><strong>Conclusion: </strong>The best prediction of <i>T</i> <sub>LCO</sub> from <sup>129</sup>Xe MRI metrics was with a random forest regression framework. Applying this model on a voxel-wise level to create parametric <i>T</i> <sub>L</sub> maps provides a useful tool for regional visualisation and clinical interpretation of <sup>129</sup>Xe gas exchange MRI.</p>\",\"PeriodicalId\":11739,\"journal\":{\"name\":\"ERJ Open Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808933/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERJ Open Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1183/23120541.00442-2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERJ Open Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/23120541.00442-2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

肺气体交换是通过肺对一氧化碳(tlco)的传递因子(tl)来评估的,也可以通过吸入氙-129 (129Xe)磁共振成像(MRI)来测量。已经提出了一个模型来估计从129Xe MRI指标的tl,但这种方法尚未得到充分验证,并且没有利用三维129Xe MRI提供的空间信息。方法:比较了基于129Xe MRI指标的三种预测T - L的模型:1)先前发表的基于生理的模型,2)多变量线性回归和3)随机森林回归。模型是根据150名哮喘和/或COPD患者的数据进行训练的。随机森林模型被应用于129Xe图像的体素上,生成区域tl地图。结果:发现生理模型的系数与先前报道的值不同。各模型预测精度均较好,平均绝对误差(MAE)小:1)1.24±0.15 mmol·min-1·kPa-1, 2) 1.01±0.06 mmol·min-1·kPa-1, 3) 0.995±0.129 mmol·min-1·kPa-1。随机森林模型应用于新冠肺炎后患者和健康志愿者验证组均表现良好(MAE=0.840 mmol·min-1·kPa-1),具有较好的泛化性。证实了建立预测T - L区域图谱的可行性,全肺T - L图谱总和与实测T - LCO一致(MAE=1.18 mmol·min-1·kPa-1)。结论:129Xe MRI指标预测tlco的最佳方法是随机森林回归框架。在体素水平上应用该模型来创建参数化的tl图,为129Xe气体交换MRI的区域可视化和临床解释提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for modelling whole-lung and regional transfer factor of the lung for carbon monoxide using hyperpolarised xenon-129 lung magnetic resonance imaging.

Background: Pulmonary gas exchange is assessed by the transfer factor of the lungs (T L) for carbon monoxide (T LCO), and can also be measured with inhaled xenon-129 (129Xe) magnetic resonance imaging (MRI). A model has been proposed to estimate T L from 129Xe MRI metrics, but this approach has not been fully validated and does not utilise the spatial information provided by three-dimensional 129Xe MRI.

Methods: Three models for predicting T L from 129Xe MRI metrics were compared: 1) a previously-published physiology-based model, 2) multivariable linear regression and 3) random forest regression. Models were trained on data from 150 patients with asthma and/or COPD. The random forest model was applied voxel-wise to 129Xe images to yield regional T L maps.

Results: Coefficients of the physiological model were found to differ from previously reported values. All models had good prediction accuracy with small mean absolute error (MAE): 1) 1.24±0.15 mmol·min-1·kPa-1, 2) 1.01±0.06 mmol·min-1·kPa-1, 3) 0.995±0.129 mmol·min-1·kPa-1. The random forest model performed well when applied to a validation group of post-COVID-19 patients and healthy volunteers (MAE=0.840 mmol·min-1·kPa-1), suggesting good generalisability. The feasibility of producing regional maps of predicted T L was demonstrated and the whole-lung sum of the T L maps agreed with measured T LCO (MAE=1.18 mmol·min-1·kPa-1).

Conclusion: The best prediction of T LCO from 129Xe MRI metrics was with a random forest regression framework. Applying this model on a voxel-wise level to create parametric T L maps provides a useful tool for regional visualisation and clinical interpretation of 129Xe gas exchange MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ERJ Open Research
ERJ Open Research Medicine-Pulmonary and Respiratory Medicine
CiteScore
6.20
自引率
4.30%
发文量
273
审稿时长
8 weeks
期刊介绍: ERJ Open Research is a fully open access original research journal, published online by the European Respiratory Society. The journal aims to publish high-quality work in all fields of respiratory science and medicine, covering basic science, clinical translational science and clinical medicine. The journal was created to help fulfil the ERS objective to disseminate scientific and educational material to its members and to the medical community, but also to provide researchers with an affordable open access specialty journal in which to publish their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信