伞草酮通过调节组氨酸和嘌呤代谢增强环磷酰胺诱导免疫抑制小鼠的免疫功能。

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mei Li, Jing Wang, Bingjie Huo, Qianqian Wan, Liwei Xing, Yuming Wang, Huan Pei, Li Wang, Yafei Xia, Huantian Cui
{"title":"伞草酮通过调节组氨酸和嘌呤代谢增强环磷酰胺诱导免疫抑制小鼠的免疫功能。","authors":"Mei Li, Jing Wang, Bingjie Huo, Qianqian Wan, Liwei Xing, Yuming Wang, Huan Pei, Li Wang, Yafei Xia, Huantian Cui","doi":"10.2174/0113892002360132250122164637","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chemotherapy-induced immunosuppression significantly impacts patient's quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study.</p><p><strong>Methods: </strong>We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4<sup>+</sup>/CD8<sup>+</sup> T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites.</p><p><strong>Results: </strong>UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression.</p><p><strong>Conclusion: </strong>UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"695-705"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Umbelliferone Enhances Immune Function in Cyclophosphamide-Induced Immunosuppressed Mice <i>via</i> Histidine and Purine Metabolism Regulation.\",\"authors\":\"Mei Li, Jing Wang, Bingjie Huo, Qianqian Wan, Liwei Xing, Yuming Wang, Huan Pei, Li Wang, Yafei Xia, Huantian Cui\",\"doi\":\"10.2174/0113892002360132250122164637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chemotherapy-induced immunosuppression significantly impacts patient's quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study.</p><p><strong>Methods: </strong>We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4<sup>+</sup>/CD8<sup>+</sup> T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites.</p><p><strong>Results: </strong>UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression.</p><p><strong>Conclusion: </strong>UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"695-705\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002360132250122164637\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002360132250122164637","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:化疗诱导的免疫抑制显著影响患者的生活质量。伞形草酮(UMB)以其抗炎、抗氧化和抗凋亡的特性而闻名,但其对环磷酰胺(CTX)诱导的免疫抑制的作用有待进一步研究。方法:建立ctx诱导的免疫抑制小鼠模型,并给予不同剂量的UMB。通过白细胞、淋巴细胞、胸腺和脾脏指数及CD4+/CD8+ T细胞比值评价免疫功能。检测血清IL-2、IFN-γ、IgA、IgM和IgG水平,以及巨噬细胞吞噬活性、NK细胞毒性和淋巴细胞增殖。采用非靶向代谢组学方法鉴定UMB调控的关键通路,采用RT-qPCR和Western blotting分析相关酶和代谢物的表达。结果:UMB干预增加了ctx免疫抑制小鼠的白细胞、淋巴细胞、胸腺和脾脏指数以及CD4+/CD8+ T细胞比值。它逆转了血清IL-2、IFN-γ、IgA、IgM和IgG水平的降低,并改善了巨噬细胞吞噬活性、NK细胞毒性和淋巴细胞增殖。代谢组学鉴定的关键途径包括组氨酸和嘌呤代谢。UMB可提高脾组织中组胺、l -谷氨酸、l -天冬氨酸、黄嘌呤、dAMP、脱氧肌苷、黄嘌呤和cGMP的水平,上调HDC、ASPA和PNP,下调XDH、PDE5、ROS和MDA。通过降低tunel阳性表达,UMB可提高SOD活性和GSH水平,减少细胞凋亡。结论:UMB通过调节组氨酸和嘌呤代谢增强ctx免疫抑制小鼠的免疫功能,具有抗氧化和抗凋亡作用。这些发现强调了UMB在减轻免疫抑制方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Umbelliferone Enhances Immune Function in Cyclophosphamide-Induced Immunosuppressed Mice via Histidine and Purine Metabolism Regulation.

Background: Chemotherapy-induced immunosuppression significantly impacts patient's quality of life. Umbelliferone (UMB) is known for its anti-inflammatory, antioxidant, and anti-apoptotic properties, but its effects on cyclophosphamide (CTX)-induced immunosuppression need further study.

Methods: We established a CTX-induced immunosuppressed mouse model and administered varying doses of UMB. Immune function was assessed by evaluating white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios. Serum levels of IL-2, IFN-γ, IgA, IgM, and IgG, along with macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation, were measured. Untargeted metabolomics was used to identify key pathways regulated by UMB, and RT-qPCR and Western blotting were performed to analyze the expression of related enzymes and metabolites.

Results: UMB intervention increased white blood cells, lymphocytes, thymus and spleen indices, and CD4+/CD8+ T cell ratios in CTX-immunosuppressed mice. It reversed reduced levels of serum IL-2, IFN-γ, IgA, IgM, and IgG and improved macrophage phagocytic activity, NK cytotoxicity, and lymphocyte proliferation. Key pathways identified by metabolomics included histidine and purine metabolism. UMB improved levels of histamine, L-glutamate, L-aspartate, xanthine, dAMP, deoxyinosine, xanthosine, and cGMP and upregulated HDC, ASPA, and PNP while downregulating XDH, PDE5, ROS, and MDA in spleen tissue. UMB enhanced SOD activity and GSH levels and reduced apoptosis, as indicated by lower TUNEL-positive expression.

Conclusion: UMB enhanced immune function in CTX-immunosuppressed mice through the regulation of histidine and purine metabolism, exhibiting antioxidant and anti-apoptotic effects. These findings highlight the potential of UMB in mitigating immunosuppression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信