Danika Nimlos, Alejandro Arellano, Scott Kevin Cushing
{"title":"接近桌面软x射线NEXAFS测量中激光产生等离子体源的时间下限。","authors":"Danika Nimlos, Alejandro Arellano, Scott Kevin Cushing","doi":"10.1002/cphc.202400857","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing popularity of time-resolved X-ray absorption measurements for understanding dynamics in molecular and material systems has led to many advances in table-top sources for pulsed X-rays. We report on a table-top laser-produced plasma (LPP) source that can perform soft X-ray (SXR), near-edge X-ray absorption fine structure (NEXAFS) measurements using a laser source with 23 ps pulse duration. The spectrometer's key specifications, such as brilliance, resolution, and stability, are characterized against the more commonly used longer-pulse-duration LPP sources. The 23 ps laser produced approximately an order of magnitude weaker SXR flux than the 8 ns laser for a higher power density due to the smaller total energy absorbed by the plasma. The increased repetition rate, as well as the use of a high line-density X-grating, and a self-referencing scheme still allowed for NEXAFS measurements of Si<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub> thin films with 2.5 minute acquisition times, a resolving power of E/ΔE=424, and a signal-to-noise ratio of 100. It was observed that degradation of the gas jet nozzle led to long-term instability of the source, which can be remediated using alternative nozzle designs. This work demonstrates the feasibility of achieving higher temporal resolution in future time-resolved X-ray absorption measurements using table-top LPP sources.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400857"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaching the Lower Temporal Limit of Laser-Produced Plasma Sources for Table-Top Soft X-Ray NEXAFS Measurements.\",\"authors\":\"Danika Nimlos, Alejandro Arellano, Scott Kevin Cushing\",\"doi\":\"10.1002/cphc.202400857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing popularity of time-resolved X-ray absorption measurements for understanding dynamics in molecular and material systems has led to many advances in table-top sources for pulsed X-rays. We report on a table-top laser-produced plasma (LPP) source that can perform soft X-ray (SXR), near-edge X-ray absorption fine structure (NEXAFS) measurements using a laser source with 23 ps pulse duration. The spectrometer's key specifications, such as brilliance, resolution, and stability, are characterized against the more commonly used longer-pulse-duration LPP sources. The 23 ps laser produced approximately an order of magnitude weaker SXR flux than the 8 ns laser for a higher power density due to the smaller total energy absorbed by the plasma. The increased repetition rate, as well as the use of a high line-density X-grating, and a self-referencing scheme still allowed for NEXAFS measurements of Si<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub> thin films with 2.5 minute acquisition times, a resolving power of E/ΔE=424, and a signal-to-noise ratio of 100. It was observed that degradation of the gas jet nozzle led to long-term instability of the source, which can be remediated using alternative nozzle designs. This work demonstrates the feasibility of achieving higher temporal resolution in future time-resolved X-ray absorption measurements using table-top LPP sources.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400857\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400857\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400857","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Approaching the Lower Temporal Limit of Laser-Produced Plasma Sources for Table-Top Soft X-Ray NEXAFS Measurements.
The increasing popularity of time-resolved X-ray absorption measurements for understanding dynamics in molecular and material systems has led to many advances in table-top sources for pulsed X-rays. We report on a table-top laser-produced plasma (LPP) source that can perform soft X-ray (SXR), near-edge X-ray absorption fine structure (NEXAFS) measurements using a laser source with 23 ps pulse duration. The spectrometer's key specifications, such as brilliance, resolution, and stability, are characterized against the more commonly used longer-pulse-duration LPP sources. The 23 ps laser produced approximately an order of magnitude weaker SXR flux than the 8 ns laser for a higher power density due to the smaller total energy absorbed by the plasma. The increased repetition rate, as well as the use of a high line-density X-grating, and a self-referencing scheme still allowed for NEXAFS measurements of Si3N4 and TiO2 thin films with 2.5 minute acquisition times, a resolving power of E/ΔE=424, and a signal-to-noise ratio of 100. It was observed that degradation of the gas jet nozzle led to long-term instability of the source, which can be remediated using alternative nozzle designs. This work demonstrates the feasibility of achieving higher temporal resolution in future time-resolved X-ray absorption measurements using table-top LPP sources.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.