齐墩果酸和顺铂对胰腺癌(Panc-1细胞系)的体外和计算机分子分析。

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Srimathi Devi Jegannathan, Wishwaa Jayapal, Bindhu Jayaprakash, Teena Prabhu
{"title":"齐墩果酸和顺铂对胰腺癌(Panc-1细胞系)的体外和计算机分子分析。","authors":"Srimathi Devi Jegannathan, Wishwaa Jayapal, Bindhu Jayaprakash, Teena Prabhu","doi":"10.2174/0118715206336591241112061246","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cisplatin (CIS) is a standard chemotherapeutic drug currently used for various cancer treatments. Due to its chemo-resistance and toxic effects, a new combinatorial approach was preferred. Oleanolic acid is one such pentacyclic terpenoid compound that tends to have various anti-cancer properties against a wide range of human carcinoma models. Yet, the final mechanisms of individual and Combinational Treatment of OA and CIS on pancreatic carcinoma persist indescribable.</p><p><strong>Objective: </strong>The Current study analyses the in-silico and in-vitro Molecular efficacy of the combinational dose of OA and CIS in Pancreatic cancer using the Panc-1 cell line.</p><p><strong>Methods and material: </strong>The preliminary screening of the anti-cancer effect of OA and CIS was evaluated meticulously using docking score with Auto-Dock. For further in-vitro analysis of the ligand, OA was isolated from blueberry through ultrasonication extraction, followed by a comprehensive range of qualitative and quantitative analysis by chromatography techniques and GC-MS studies. Anti-proliferative and cytotoxicity activity of our combinational compounds were determined using the MTT assay and the LDH leakage assay. Cell membrane integrity was analyzed by measuring ROS generation and mitochondrial membrane potential in treated cells using fluorometric detection methods. Detection of the Anti-Apoptotic potential of our target compound was evaluated by DNA fragmentation assay and Caspase activity assay. Quantitative real-time PCR and Western Blotting were used to determine the genes and Protein expression intricated for apoptosis, angiogenesis, cell cycle regulation, and metastasis.</p><p><strong>Results: </strong>Molecular docking analysis suggests that OA and CIS possess a strong binding affinity for hydrogen bond interaction with the highest fitness score for various anti-cancer genes, leading to the drug's significant apoptotic and anti-angiogenic effects. Further preliminary analysis reports of UV spectra and GC-MS data suggested that the OA compound tends to exhibit a peak at 235-288 nm with a GC retention time of 15.45 min with m/z 240 and m/z 280 ratios. The output of In-vitro analysis of the anti-proliferative and cytotoxicity effect of OA and CIS tends to show the significant inhibition of cells in a dose-dependent manner with IC50 value of 5.75 μM OA and 2.95 μM of CIS with significant leakage in LDH was observed in combinational treated cells compare to individual treated cancer cells. The computational CI plot report of OA and CIS report revealed a synergistic dose effect with a CI value<1. Apoptotic effect of combinational dose revealed synergistic effects by down-regulation of angiogenic and metastatic genes and proteins (CDKN2A, SMAD4, VEG-F, MMP-9) stimulates to caspase cascade activation by intrinsic mediated apoptosis, which was further confirmed through DNA fragmentation assay by cleavage of fragments in treated cells compared to control.</p><p><strong>Conclusion: </strong>In conclusion, the present study indicates that the co-treatment of OA with CIS in pancreatic cancer cells exerts strong interaction with synergistic effects on cell growth inhibition, apoptosis induction, and angiogenesis genes through regulating signal-target proteins applicable for pancreatic cancer.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-silico and In-vitro Molecular Analysis of Oleanolic Acid and Cisplatin on Pancreatic Cancer (Panc-1 Cell Line).\",\"authors\":\"Srimathi Devi Jegannathan, Wishwaa Jayapal, Bindhu Jayaprakash, Teena Prabhu\",\"doi\":\"10.2174/0118715206336591241112061246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cisplatin (CIS) is a standard chemotherapeutic drug currently used for various cancer treatments. Due to its chemo-resistance and toxic effects, a new combinatorial approach was preferred. Oleanolic acid is one such pentacyclic terpenoid compound that tends to have various anti-cancer properties against a wide range of human carcinoma models. Yet, the final mechanisms of individual and Combinational Treatment of OA and CIS on pancreatic carcinoma persist indescribable.</p><p><strong>Objective: </strong>The Current study analyses the in-silico and in-vitro Molecular efficacy of the combinational dose of OA and CIS in Pancreatic cancer using the Panc-1 cell line.</p><p><strong>Methods and material: </strong>The preliminary screening of the anti-cancer effect of OA and CIS was evaluated meticulously using docking score with Auto-Dock. For further in-vitro analysis of the ligand, OA was isolated from blueberry through ultrasonication extraction, followed by a comprehensive range of qualitative and quantitative analysis by chromatography techniques and GC-MS studies. Anti-proliferative and cytotoxicity activity of our combinational compounds were determined using the MTT assay and the LDH leakage assay. Cell membrane integrity was analyzed by measuring ROS generation and mitochondrial membrane potential in treated cells using fluorometric detection methods. Detection of the Anti-Apoptotic potential of our target compound was evaluated by DNA fragmentation assay and Caspase activity assay. Quantitative real-time PCR and Western Blotting were used to determine the genes and Protein expression intricated for apoptosis, angiogenesis, cell cycle regulation, and metastasis.</p><p><strong>Results: </strong>Molecular docking analysis suggests that OA and CIS possess a strong binding affinity for hydrogen bond interaction with the highest fitness score for various anti-cancer genes, leading to the drug's significant apoptotic and anti-angiogenic effects. Further preliminary analysis reports of UV spectra and GC-MS data suggested that the OA compound tends to exhibit a peak at 235-288 nm with a GC retention time of 15.45 min with m/z 240 and m/z 280 ratios. The output of In-vitro analysis of the anti-proliferative and cytotoxicity effect of OA and CIS tends to show the significant inhibition of cells in a dose-dependent manner with IC50 value of 5.75 μM OA and 2.95 μM of CIS with significant leakage in LDH was observed in combinational treated cells compare to individual treated cancer cells. The computational CI plot report of OA and CIS report revealed a synergistic dose effect with a CI value<1. Apoptotic effect of combinational dose revealed synergistic effects by down-regulation of angiogenic and metastatic genes and proteins (CDKN2A, SMAD4, VEG-F, MMP-9) stimulates to caspase cascade activation by intrinsic mediated apoptosis, which was further confirmed through DNA fragmentation assay by cleavage of fragments in treated cells compared to control.</p><p><strong>Conclusion: </strong>In conclusion, the present study indicates that the co-treatment of OA with CIS in pancreatic cancer cells exerts strong interaction with synergistic effects on cell growth inhibition, apoptosis induction, and angiogenesis genes through regulating signal-target proteins applicable for pancreatic cancer.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206336591241112061246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206336591241112061246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:顺铂(CIS)是目前用于各种癌症治疗的标准化疗药物。由于其耐药和毒性作用,首选新的组合方法。齐墩果酸是一种五环萜类化合物,对多种人类癌症模型具有多种抗癌特性。然而,OA和CIS单独或联合治疗胰腺癌的最终机制仍然难以描述。目的:本研究利用Panc-1细胞系分析OA和CIS联合剂量对胰腺癌的体内和体外分子疗效。方法与材料:采用Auto-Dock对接评分法对OA和CIS的抗癌作用进行初步筛选。为了进一步对配体进行体外分析,我们通过超声提取法从蓝莓中分离出OA,然后通过色谱技术和GC-MS研究对OA进行了全面的定性和定量分析。我们的组合化合物的抗增殖和细胞毒性活性是用MTT法和LDH泄漏法测定的。通过荧光检测方法测量处理细胞的ROS生成和线粒体膜电位,分析细胞膜完整性。通过DNA片段化实验和Caspase活性实验检测目标化合物的抗凋亡潜能。采用实时荧光定量PCR和Western Blotting检测与细胞凋亡、血管生成、细胞周期调控和转移相关的基因和蛋白表达。结果:分子对接分析表明,OA和CIS对氢键相互作用具有较强的结合亲和力,对各种抗癌基因的适应度评分最高,导致药物具有显著的凋亡和抗血管生成作用。进一步的紫外光谱和GC- ms数据初步分析报告表明,OA化合物在235 ~ 288 nm处出现峰,在m/z 240和m/z 280比下,GC保留时间为15.45 min。体外抗增殖和细胞毒性分析结果显示,OA和CIS对细胞的抑制作用呈剂量依赖性,与单独处理的癌细胞相比,联合处理的细胞中OA和CIS的IC50值分别为5.75 μM和2.95 μM,且LDH有显著渗漏。OA和CIS报告的计算CI图报告显示了协同剂量效应与CI值的协同作用。结论:本研究提示OA与CIS共同治疗胰腺癌细胞,通过调节适用于胰腺癌的信号靶蛋白,对细胞生长抑制、诱导凋亡和血管生成基因产生强的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-silico and In-vitro Molecular Analysis of Oleanolic Acid and Cisplatin on Pancreatic Cancer (Panc-1 Cell Line).

Background: Cisplatin (CIS) is a standard chemotherapeutic drug currently used for various cancer treatments. Due to its chemo-resistance and toxic effects, a new combinatorial approach was preferred. Oleanolic acid is one such pentacyclic terpenoid compound that tends to have various anti-cancer properties against a wide range of human carcinoma models. Yet, the final mechanisms of individual and Combinational Treatment of OA and CIS on pancreatic carcinoma persist indescribable.

Objective: The Current study analyses the in-silico and in-vitro Molecular efficacy of the combinational dose of OA and CIS in Pancreatic cancer using the Panc-1 cell line.

Methods and material: The preliminary screening of the anti-cancer effect of OA and CIS was evaluated meticulously using docking score with Auto-Dock. For further in-vitro analysis of the ligand, OA was isolated from blueberry through ultrasonication extraction, followed by a comprehensive range of qualitative and quantitative analysis by chromatography techniques and GC-MS studies. Anti-proliferative and cytotoxicity activity of our combinational compounds were determined using the MTT assay and the LDH leakage assay. Cell membrane integrity was analyzed by measuring ROS generation and mitochondrial membrane potential in treated cells using fluorometric detection methods. Detection of the Anti-Apoptotic potential of our target compound was evaluated by DNA fragmentation assay and Caspase activity assay. Quantitative real-time PCR and Western Blotting were used to determine the genes and Protein expression intricated for apoptosis, angiogenesis, cell cycle regulation, and metastasis.

Results: Molecular docking analysis suggests that OA and CIS possess a strong binding affinity for hydrogen bond interaction with the highest fitness score for various anti-cancer genes, leading to the drug's significant apoptotic and anti-angiogenic effects. Further preliminary analysis reports of UV spectra and GC-MS data suggested that the OA compound tends to exhibit a peak at 235-288 nm with a GC retention time of 15.45 min with m/z 240 and m/z 280 ratios. The output of In-vitro analysis of the anti-proliferative and cytotoxicity effect of OA and CIS tends to show the significant inhibition of cells in a dose-dependent manner with IC50 value of 5.75 μM OA and 2.95 μM of CIS with significant leakage in LDH was observed in combinational treated cells compare to individual treated cancer cells. The computational CI plot report of OA and CIS report revealed a synergistic dose effect with a CI value<1. Apoptotic effect of combinational dose revealed synergistic effects by down-regulation of angiogenic and metastatic genes and proteins (CDKN2A, SMAD4, VEG-F, MMP-9) stimulates to caspase cascade activation by intrinsic mediated apoptosis, which was further confirmed through DNA fragmentation assay by cleavage of fragments in treated cells compared to control.

Conclusion: In conclusion, the present study indicates that the co-treatment of OA with CIS in pancreatic cancer cells exerts strong interaction with synergistic effects on cell growth inhibition, apoptosis induction, and angiogenesis genes through regulating signal-target proteins applicable for pancreatic cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信