加工参数对干削过程中15-5沉淀硬化不锈钢可加工性的影响

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. P. Selvaraj, D. S. E. J. Dhas, P. George
{"title":"加工参数对干削过程中15-5沉淀硬化不锈钢可加工性的影响","authors":"D. P. Selvaraj,&nbsp;D. S. E. J. Dhas,&nbsp;P. George","doi":"10.1002/mawe.202400180","DOIUrl":null,"url":null,"abstract":"<p>This research presents the studies on the effect of machining variables and the empirical modeling of machinability output responses during dry turning of 15–5 precipitation-hardened stainless steel (PHSS) using the taguchi meta-heuristic algorithm. L<sub>9</sub> orthogonal array (OA) robust experimental design was selected for conducting the dry turning operations. The input variables included cutting velocity, depth of cut, and feed rate, while the output responses measured were surface roughness (R<sub>a</sub>) and cutting force (F<sub>c</sub>). The influence of these process variables was determined through analysis of variance (ANOVA). ANOVA results revealed that cutting speed, feed rate and depth of cut were impacting the average surface roughness by 36 %, 29 %, and 31 %, respectively and influencing the cutting force by 2 %, 16 %, and 72 %, respectively, during turning operation. Empirical models for predicting cutting force and surface roughness were developed using the Taguchi meta-heuristic algorithm. The optimization process resulted in a significant reduction in surface roughness, with R<sub>a</sub> decreasing by 17 % and a notable decrease in cutting force, F<sub>c</sub>, by 8 %. These numerical improvements indicate that the proposed optimization approach substantially enhances machining performance, validating its effectiveness.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 2","pages":"281-289"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of machining parameters on the machinability of 15-5 precipitation hardened stainless steel during dry turning\\n Einfluss der Bearbeitungsparameter auf die Bearbeitbarkeit von ausscheidungsgehärtetem Edelstahl 15-5 beim Trockendrehen\",\"authors\":\"D. P. Selvaraj,&nbsp;D. S. E. J. Dhas,&nbsp;P. George\",\"doi\":\"10.1002/mawe.202400180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research presents the studies on the effect of machining variables and the empirical modeling of machinability output responses during dry turning of 15–5 precipitation-hardened stainless steel (PHSS) using the taguchi meta-heuristic algorithm. L<sub>9</sub> orthogonal array (OA) robust experimental design was selected for conducting the dry turning operations. The input variables included cutting velocity, depth of cut, and feed rate, while the output responses measured were surface roughness (R<sub>a</sub>) and cutting force (F<sub>c</sub>). The influence of these process variables was determined through analysis of variance (ANOVA). ANOVA results revealed that cutting speed, feed rate and depth of cut were impacting the average surface roughness by 36 %, 29 %, and 31 %, respectively and influencing the cutting force by 2 %, 16 %, and 72 %, respectively, during turning operation. Empirical models for predicting cutting force and surface roughness were developed using the Taguchi meta-heuristic algorithm. The optimization process resulted in a significant reduction in surface roughness, with R<sub>a</sub> decreasing by 17 % and a notable decrease in cutting force, F<sub>c</sub>, by 8 %. These numerical improvements indicate that the proposed optimization approach substantially enhances machining performance, validating its effectiveness.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"56 2\",\"pages\":\"281-289\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400180\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用田口元启发式算法研究了15-5析出硬化不锈钢(PHSS)干车削加工过程中加工变量的影响以及可加工性输出响应的经验建模。选择L9正交阵列(OA)稳健实验设计进行干式车削加工。输入变量包括切削速度、切削深度和进给速度,输出响应测量为表面粗糙度(Ra)和切削力(Fc)。通过方差分析(ANOVA)确定这些过程变量的影响。方差分析结果显示,在车削过程中,切削速度、进给速度和切削深度对平均表面粗糙度的影响分别为36%、29%和31%,对切削力的影响分别为2%、16%和72%。利用Taguchi元启发式算法建立了预测切削力和表面粗糙度的经验模型。优化后的表面粗糙度显著降低,Ra降低了17%,切削力Fc显著降低了8%。这些数值改进表明,所提出的优化方法大大提高了加工性能,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of machining parameters on the machinability of 15-5 precipitation hardened stainless steel during dry turning
      Einfluss der Bearbeitungsparameter auf die Bearbeitbarkeit von ausscheidungsgehärtetem Edelstahl 15-5 beim Trockendrehen

Effect of machining parameters on the machinability of 15-5 precipitation hardened stainless steel during dry turning Einfluss der Bearbeitungsparameter auf die Bearbeitbarkeit von ausscheidungsgehärtetem Edelstahl 15-5 beim Trockendrehen

This research presents the studies on the effect of machining variables and the empirical modeling of machinability output responses during dry turning of 15–5 precipitation-hardened stainless steel (PHSS) using the taguchi meta-heuristic algorithm. L9 orthogonal array (OA) robust experimental design was selected for conducting the dry turning operations. The input variables included cutting velocity, depth of cut, and feed rate, while the output responses measured were surface roughness (Ra) and cutting force (Fc). The influence of these process variables was determined through analysis of variance (ANOVA). ANOVA results revealed that cutting speed, feed rate and depth of cut were impacting the average surface roughness by 36 %, 29 %, and 31 %, respectively and influencing the cutting force by 2 %, 16 %, and 72 %, respectively, during turning operation. Empirical models for predicting cutting force and surface roughness were developed using the Taguchi meta-heuristic algorithm. The optimization process resulted in a significant reduction in surface roughness, with Ra decreasing by 17 % and a notable decrease in cutting force, Fc, by 8 %. These numerical improvements indicate that the proposed optimization approach substantially enhances machining performance, validating its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信