钠基卤化物双钙钛矿Rb2NaSbZ6 (Z = Cl, Br, and I)热电、电子、光电、弹性和结构性质的DFT研究

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Syed Hatim Shah, Peng Song, Taihong Huang, Shakeel Shakeel, Jiansheng Lu, Aboud Ahmed Awadh Bahajjaj, G. Murtaza
{"title":"钠基卤化物双钙钛矿Rb2NaSbZ6 (Z = Cl, Br, and I)热电、电子、光电、弹性和结构性质的DFT研究","authors":"Syed Hatim Shah,&nbsp;Peng Song,&nbsp;Taihong Huang,&nbsp;Shakeel Shakeel,&nbsp;Jiansheng Lu,&nbsp;Aboud Ahmed Awadh Bahajjaj,&nbsp;G. Murtaza","doi":"10.1002/jccs.202400254","DOIUrl":null,"url":null,"abstract":"<p>Sodium-based halide double perovskites (HDPs) present a promising alternative to Pb-based perovskites for safe solar and thermal energy conversion devices due to their high durability and non-toxic elements. This study examines the electronic, thermoelectric, elastic, optoelectronic, and structural properties of Rb<sub>2</sub>NaSbZ<sub>6</sub> (Z = I, Br, Cl) double perovskite compounds using density functional theory (DFT). These compounds, characterized by a cubic structure, show increasing structural parameters as halogens are substituted from chlorine to iodine. Structural stability is confirmed by evaluating the enthalpy of formation, Gibbs free energy, Born and Huang criteria, and tolerance factor. Pugh's ratio indicates the ductile nature of the compounds. All investigated halide compounds exhibit an indirect band gap ranging from 3.9 to 2.34 eV, with valence and conduction band extrema located at different symmetry points, and a higher effective mass of holes is noted. This study also analyzes the refractive index, optical loss, light absorption, and polarization across the energy range of 0–10 eV. The spectral characteristics indicate that these HDPs are suitable for optoelectronic and photovoltaic devices due to their absorption in the visible and near-ultraviolet spectra. High figures of merit (0.45–0.6) derived from power factor and thermal conductivity calculations suggest the potential of these compositions as thermoelectric devices. These findings provide a comprehensive understanding of these materials, facilitating their further deployment.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 2","pages":"211-228"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT investigation on thermoelectric, electronic, optoelectronic, elastic, and structural properties of sodium-based halide double perovskites Rb2NaSbZ6 (Z = Cl, Br, and I)\",\"authors\":\"Syed Hatim Shah,&nbsp;Peng Song,&nbsp;Taihong Huang,&nbsp;Shakeel Shakeel,&nbsp;Jiansheng Lu,&nbsp;Aboud Ahmed Awadh Bahajjaj,&nbsp;G. Murtaza\",\"doi\":\"10.1002/jccs.202400254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sodium-based halide double perovskites (HDPs) present a promising alternative to Pb-based perovskites for safe solar and thermal energy conversion devices due to their high durability and non-toxic elements. This study examines the electronic, thermoelectric, elastic, optoelectronic, and structural properties of Rb<sub>2</sub>NaSbZ<sub>6</sub> (Z = I, Br, Cl) double perovskite compounds using density functional theory (DFT). These compounds, characterized by a cubic structure, show increasing structural parameters as halogens are substituted from chlorine to iodine. Structural stability is confirmed by evaluating the enthalpy of formation, Gibbs free energy, Born and Huang criteria, and tolerance factor. Pugh's ratio indicates the ductile nature of the compounds. All investigated halide compounds exhibit an indirect band gap ranging from 3.9 to 2.34 eV, with valence and conduction band extrema located at different symmetry points, and a higher effective mass of holes is noted. This study also analyzes the refractive index, optical loss, light absorption, and polarization across the energy range of 0–10 eV. The spectral characteristics indicate that these HDPs are suitable for optoelectronic and photovoltaic devices due to their absorption in the visible and near-ultraviolet spectra. High figures of merit (0.45–0.6) derived from power factor and thermal conductivity calculations suggest the potential of these compositions as thermoelectric devices. These findings provide a comprehensive understanding of these materials, facilitating their further deployment.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 2\",\"pages\":\"211-228\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400254\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400254","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钠基卤化物双钙钛矿(hdp)由于其高耐用性和无毒元素,为安全的太阳能和热能转换装置提供了一种有前途的替代铅基钙钛矿。本研究利用密度泛函理论(DFT)研究了Rb2NaSbZ6 (Z = I, Br, Cl)双钙钛矿化合物的电子、热电、弹性、光电和结构性质。这些化合物以立方结构为特征,随着卤素从氯取代为碘,其结构参数不断增加。通过评价生成焓、吉布斯自由能、Born和Huang准则以及容差系数来确定结构的稳定性。皮尤比表明了化合物的延展性。所研究的卤化物化合物均具有3.9 ~ 2.34 eV的间接带隙,其价带和导带极值位于不同的对称点,且空穴的有效质量较高。本研究还分析了在0-10 eV能量范围内的折射率、光损耗、光吸收和偏振。光谱特性表明,由于其在可见光和近紫外光谱中的吸收,这些HDPs适用于光电和光伏器件。从功率因数和导热系数计算得出的高质量数字(0.45-0.6)表明这些组合物作为热电器件的潜力。这些发现提供了对这些材料的全面了解,促进了它们的进一步应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DFT investigation on thermoelectric, electronic, optoelectronic, elastic, and structural properties of sodium-based halide double perovskites Rb2NaSbZ6 (Z = Cl, Br, and I)

DFT investigation on thermoelectric, electronic, optoelectronic, elastic, and structural properties of sodium-based halide double perovskites Rb2NaSbZ6 (Z = Cl, Br, and I)

Sodium-based halide double perovskites (HDPs) present a promising alternative to Pb-based perovskites for safe solar and thermal energy conversion devices due to their high durability and non-toxic elements. This study examines the electronic, thermoelectric, elastic, optoelectronic, and structural properties of Rb2NaSbZ6 (Z = I, Br, Cl) double perovskite compounds using density functional theory (DFT). These compounds, characterized by a cubic structure, show increasing structural parameters as halogens are substituted from chlorine to iodine. Structural stability is confirmed by evaluating the enthalpy of formation, Gibbs free energy, Born and Huang criteria, and tolerance factor. Pugh's ratio indicates the ductile nature of the compounds. All investigated halide compounds exhibit an indirect band gap ranging from 3.9 to 2.34 eV, with valence and conduction band extrema located at different symmetry points, and a higher effective mass of holes is noted. This study also analyzes the refractive index, optical loss, light absorption, and polarization across the energy range of 0–10 eV. The spectral characteristics indicate that these HDPs are suitable for optoelectronic and photovoltaic devices due to their absorption in the visible and near-ultraviolet spectra. High figures of merit (0.45–0.6) derived from power factor and thermal conductivity calculations suggest the potential of these compositions as thermoelectric devices. These findings provide a comprehensive understanding of these materials, facilitating their further deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信