Ti3C2/Fe1-xBaxCr2O4纳米复合材料的可持续合成及电化学表征

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Kiran Batool, Adel El-marghany, Muhammad Saeed
{"title":"Ti3C2/Fe1-xBaxCr2O4纳米复合材料的可持续合成及电化学表征","authors":"Kiran Batool,&nbsp;Adel El-marghany,&nbsp;Muhammad Saeed","doi":"10.1002/jccs.202400313","DOIUrl":null,"url":null,"abstract":"<p>This study presents a comprehensive analysis of the structural, morphological, and electrochemical properties of the synthesized Ti₃C₂ and Ti₃C₂/Fe<sub>1-x</sub>BaₓCr₂O₄ nanocomposite, highlighting their potential as electrode materials for supercapacitors. Utilizing X-ray diffraction (XRD), we established the crystalline structure, revealing crystallite sizes of 13.29 nm and 20.00 nm for Ti₃C₂ and the nanocomposite, respectively, with corresponding crystallinity indices of 60% and 70%. Scanning electron microscopy (SEM) showed that Ti₃C₂ exhibited a characteristic layered structure, while the composite demonstrated a more granular morphology with integrated ferrite particles, enhancing its magnetic properties. Energy dispersive X-ray spectroscopy (EDS) confirmed the elemental composition, including titanium, iron, barium, and chromium, validating the successful synthesis of the nanocomposite. Photoluminescence (PL) analysis indicated a significant band gap reduction from 2.05 eV for Ti₃C₂ to 1.77 eV for the composite, suggesting enhanced light absorption capabilities. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results demonstrated impressive electrochemical performance, with a maximum specific capacitance of 728.5 F/g in 1 M H₂SO₄. These findings collectively underscore the structural integrity, enhanced electrochemical properties, and multifunctional potential of the Ti₃C₂/Fe<sub>1-x</sub>BaₓCr₂O₄ nanocomposite for advanced energy storage applications.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 2","pages":"186-195"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable synthesis and electrochemical characterization of Ti3C2/Fe1-xBaxCr2O4 nanocomposite for enhanced Supercapacitor electrode performance\",\"authors\":\"Kiran Batool,&nbsp;Adel El-marghany,&nbsp;Muhammad Saeed\",\"doi\":\"10.1002/jccs.202400313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a comprehensive analysis of the structural, morphological, and electrochemical properties of the synthesized Ti₃C₂ and Ti₃C₂/Fe<sub>1-x</sub>BaₓCr₂O₄ nanocomposite, highlighting their potential as electrode materials for supercapacitors. Utilizing X-ray diffraction (XRD), we established the crystalline structure, revealing crystallite sizes of 13.29 nm and 20.00 nm for Ti₃C₂ and the nanocomposite, respectively, with corresponding crystallinity indices of 60% and 70%. Scanning electron microscopy (SEM) showed that Ti₃C₂ exhibited a characteristic layered structure, while the composite demonstrated a more granular morphology with integrated ferrite particles, enhancing its magnetic properties. Energy dispersive X-ray spectroscopy (EDS) confirmed the elemental composition, including titanium, iron, barium, and chromium, validating the successful synthesis of the nanocomposite. Photoluminescence (PL) analysis indicated a significant band gap reduction from 2.05 eV for Ti₃C₂ to 1.77 eV for the composite, suggesting enhanced light absorption capabilities. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results demonstrated impressive electrochemical performance, with a maximum specific capacitance of 728.5 F/g in 1 M H₂SO₄. These findings collectively underscore the structural integrity, enhanced electrochemical properties, and multifunctional potential of the Ti₃C₂/Fe<sub>1-x</sub>BaₓCr₂O₄ nanocomposite for advanced energy storage applications.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 2\",\"pages\":\"186-195\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400313\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400313","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究综合分析了合成的Ti₃C₂和Ti₃C₂/Fe1-xBaₓCr₂O₄纳米复合材料的结构、形态和电化学性能,突出了它们作为超级电容器电极材料的潜力。利用x射线衍射(XRD)建立了Ti₃C₂的晶体结构,发现Ti₃C₂和纳米复合材料的晶粒尺寸分别为13.29 nm和20.00 nm,结晶度分别为60%和70%。扫描电镜(SEM)结果表明,Ti₃C₂具有层状结构特征,而复合材料具有更大的粒状结构,具有完整的铁氧体颗粒,增强了其磁性能。能量色散x射线光谱(EDS)证实了元素组成,包括钛,铁,钡和铬,验证了纳米复合材料的成功合成。光致发光(PL)分析表明,Ti₃C₂的带隙从2.05 eV显著降低到1.77 eV,表明复合材料的光吸收能力增强。循环伏安(CV)和电化学阻抗谱(EIS)结果表明,在1 M H₂SO₄中,最大比电容为728.5 F/g。这些发现共同强调了Ti₃C₂/Fe1-xBaₓCr₂O₄纳米复合材料的结构完整性、增强的电化学性能和多功能潜力,可用于先进的储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable synthesis and electrochemical characterization of Ti3C2/Fe1-xBaxCr2O4 nanocomposite for enhanced Supercapacitor electrode performance

This study presents a comprehensive analysis of the structural, morphological, and electrochemical properties of the synthesized Ti₃C₂ and Ti₃C₂/Fe1-xBaₓCr₂O₄ nanocomposite, highlighting their potential as electrode materials for supercapacitors. Utilizing X-ray diffraction (XRD), we established the crystalline structure, revealing crystallite sizes of 13.29 nm and 20.00 nm for Ti₃C₂ and the nanocomposite, respectively, with corresponding crystallinity indices of 60% and 70%. Scanning electron microscopy (SEM) showed that Ti₃C₂ exhibited a characteristic layered structure, while the composite demonstrated a more granular morphology with integrated ferrite particles, enhancing its magnetic properties. Energy dispersive X-ray spectroscopy (EDS) confirmed the elemental composition, including titanium, iron, barium, and chromium, validating the successful synthesis of the nanocomposite. Photoluminescence (PL) analysis indicated a significant band gap reduction from 2.05 eV for Ti₃C₂ to 1.77 eV for the composite, suggesting enhanced light absorption capabilities. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results demonstrated impressive electrochemical performance, with a maximum specific capacitance of 728.5 F/g in 1 M H₂SO₄. These findings collectively underscore the structural integrity, enhanced electrochemical properties, and multifunctional potential of the Ti₃C₂/Fe1-xBaₓCr₂O₄ nanocomposite for advanced energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信