Mingyuan Zou, Li Qiu, Wentao Wu, Hui Liu, Han Xiao, Jun Liu
{"title":"挑战对肿瘤基因和肿瘤抑制基因的传统认识:癌症基因表达模式的综合分析","authors":"Mingyuan Zou, Li Qiu, Wentao Wu, Hui Liu, Han Xiao, Jun Liu","doi":"10.1002/gcc.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Identifying genes involved in cancer is crucial for understanding the underlying molecular mechanisms of the disease and developing effective treatment strategies. Differential expression analysis (DEA) is the predominant method used to identify cancer-related genes. This approach involves comparing gene expression levels between different samples, such as cancerous and non-cancerous tissues, to identify genes that are significantly upregulated or downregulated in cancer. DEA is based on the commonly believed assumption that genes upregulated in cancerous tissues have the potential to function as oncogenes. Their expression levels often correlate with cancer advancement and unfavorable prognosis, whereas downregulated genes display the opposite correlation. However, contrary to the prevailing belief, our analysis utilizing The Cancer Genome Atlas (TCGA) databases revealed that the upregulated or downregulated genes in cancer do not always align with cancer progression or prognosis. These findings emphasize the need for alternative approaches for identifying cancer-related genes that may be more accurate and effective. To address this need, we compared the effectiveness of machine learning (ML) methods with that of traditional DEA in the identification of cancer-related genes. ML algorithms have the advantage of being able to analyze large-scale genomic data and identify complex patterns that may go unnoticed by traditional methods. Our results demonstrated that ML methods significantly outperformed DEA in the screening of cancer-related genes.</p>\n </div>","PeriodicalId":12700,"journal":{"name":"Genes, Chromosomes & Cancer","volume":"64 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenging Conventional Perceptions of Oncogenes and Tumor Suppressor Genes: A Comprehensive Analysis of Gene Expression Patterns in Cancer\",\"authors\":\"Mingyuan Zou, Li Qiu, Wentao Wu, Hui Liu, Han Xiao, Jun Liu\",\"doi\":\"10.1002/gcc.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Identifying genes involved in cancer is crucial for understanding the underlying molecular mechanisms of the disease and developing effective treatment strategies. Differential expression analysis (DEA) is the predominant method used to identify cancer-related genes. This approach involves comparing gene expression levels between different samples, such as cancerous and non-cancerous tissues, to identify genes that are significantly upregulated or downregulated in cancer. DEA is based on the commonly believed assumption that genes upregulated in cancerous tissues have the potential to function as oncogenes. Their expression levels often correlate with cancer advancement and unfavorable prognosis, whereas downregulated genes display the opposite correlation. However, contrary to the prevailing belief, our analysis utilizing The Cancer Genome Atlas (TCGA) databases revealed that the upregulated or downregulated genes in cancer do not always align with cancer progression or prognosis. These findings emphasize the need for alternative approaches for identifying cancer-related genes that may be more accurate and effective. To address this need, we compared the effectiveness of machine learning (ML) methods with that of traditional DEA in the identification of cancer-related genes. ML algorithms have the advantage of being able to analyze large-scale genomic data and identify complex patterns that may go unnoticed by traditional methods. Our results demonstrated that ML methods significantly outperformed DEA in the screening of cancer-related genes.</p>\\n </div>\",\"PeriodicalId\":12700,\"journal\":{\"name\":\"Genes, Chromosomes & Cancer\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes, Chromosomes & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gcc.70030\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes, Chromosomes & Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gcc.70030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Challenging Conventional Perceptions of Oncogenes and Tumor Suppressor Genes: A Comprehensive Analysis of Gene Expression Patterns in Cancer
Identifying genes involved in cancer is crucial for understanding the underlying molecular mechanisms of the disease and developing effective treatment strategies. Differential expression analysis (DEA) is the predominant method used to identify cancer-related genes. This approach involves comparing gene expression levels between different samples, such as cancerous and non-cancerous tissues, to identify genes that are significantly upregulated or downregulated in cancer. DEA is based on the commonly believed assumption that genes upregulated in cancerous tissues have the potential to function as oncogenes. Their expression levels often correlate with cancer advancement and unfavorable prognosis, whereas downregulated genes display the opposite correlation. However, contrary to the prevailing belief, our analysis utilizing The Cancer Genome Atlas (TCGA) databases revealed that the upregulated or downregulated genes in cancer do not always align with cancer progression or prognosis. These findings emphasize the need for alternative approaches for identifying cancer-related genes that may be more accurate and effective. To address this need, we compared the effectiveness of machine learning (ML) methods with that of traditional DEA in the identification of cancer-related genes. ML algorithms have the advantage of being able to analyze large-scale genomic data and identify complex patterns that may go unnoticed by traditional methods. Our results demonstrated that ML methods significantly outperformed DEA in the screening of cancer-related genes.
期刊介绍:
Genes, Chromosomes & Cancer will offer rapid publication of original full-length research articles, perspectives, reviews and letters to the editors on genetic analysis as related to the study of neoplasia. The main scope of the journal is to communicate new insights into the etiology and/or pathogenesis of neoplasia, as well as molecular and cellular findings of relevance for the management of cancer patients. While preference will be given to research utilizing analytical and functional approaches, descriptive studies and case reports will also be welcomed when they offer insights regarding basic biological mechanisms or the clinical management of neoplastic disorders.