一类n$ n$ -量子比特量子纠缠态的量子验证

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Yangwei Ou, Xiaoqing Tan, Daipengwei Bao, Qingshan Xu, Qin Li, Shao-Ming Fei
{"title":"一类n$ n$ -量子比特量子纠缠态的量子验证","authors":"Yangwei Ou,&nbsp;Xiaoqing Tan,&nbsp;Daipengwei Bao,&nbsp;Qingshan Xu,&nbsp;Qin Li,&nbsp;Shao-Ming Fei","doi":"10.1002/andp.202400305","DOIUrl":null,"url":null,"abstract":"<p>The quantum verification is to determine whether a quantum device is intentionally deceptive by assessing the proximity between the actual output state and the expected state. As a crucial step toward the advancement of quantum technology, numerous quantum state verification methods have been proposed. However, there remains a scarcity of methods for verifying states with an arbitrary number of qubits. A verification strategy for the entangled states <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>ψ</mi>\n <mo>⟩</mo>\n </mrow>\n <mo>=</mo>\n <mi>sin</mi>\n <mi>θ</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n <mn>0</mn>\n <mo>⟩</mo>\n </mrow>\n <mrow>\n <mo>⊗</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>+</mo>\n <mi>cos</mi>\n <mi>θ</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n <mn>1</mn>\n <mo>⟩</mo>\n </mrow>\n <mrow>\n <mo>⊗</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathinner {|{\\psi }\\rangle } =\\sin \\theta \\mathinner {|{0}\\rangle }^{\\otimes n} +\\cos \\theta \\mathinner {|{1}\\rangle } ^{\\otimes n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>π</mi>\n <mo>/</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\theta \\in (0,\\pi /2)$</annotation>\n </semantics></math> is proposed. Specifically, an average map is introduced and demonstrated that it simplifies the matrix form of the verification strategy while maintaining the verification efficiency. By optimizing the verification strategies, the strategy with local projective measurements is obtained.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Verification for a Class of \\n \\n n\\n $n$\\n -Qubit Quantum Entangled States\",\"authors\":\"Yangwei Ou,&nbsp;Xiaoqing Tan,&nbsp;Daipengwei Bao,&nbsp;Qingshan Xu,&nbsp;Qin Li,&nbsp;Shao-Ming Fei\",\"doi\":\"10.1002/andp.202400305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum verification is to determine whether a quantum device is intentionally deceptive by assessing the proximity between the actual output state and the expected state. As a crucial step toward the advancement of quantum technology, numerous quantum state verification methods have been proposed. However, there remains a scarcity of methods for verifying states with an arbitrary number of qubits. A verification strategy for the entangled states <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>ψ</mi>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>sin</mi>\\n <mi>θ</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mn>0</mn>\\n <mo>⟩</mo>\\n </mrow>\\n <mrow>\\n <mo>⊗</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mi>cos</mi>\\n <mi>θ</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mn>1</mn>\\n <mo>⟩</mo>\\n </mrow>\\n <mrow>\\n <mo>⊗</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathinner {|{\\\\psi }\\\\rangle } =\\\\sin \\\\theta \\\\mathinner {|{0}\\\\rangle }^{\\\\otimes n} +\\\\cos \\\\theta \\\\mathinner {|{1}\\\\rangle } ^{\\\\otimes n}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>θ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>π</mi>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\theta \\\\in (0,\\\\pi /2)$</annotation>\\n </semantics></math> is proposed. Specifically, an average map is introduced and demonstrated that it simplifies the matrix form of the verification strategy while maintaining the verification efficiency. By optimizing the verification strategies, the strategy with local projective measurements is obtained.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400305\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400305","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子验证是通过评估实际输出状态与预期状态之间的接近程度来确定量子器件是否有意欺骗。作为量子技术进步的关键一步,人们提出了许多量子态验证方法。然而,仍然缺乏用任意数量的量子比特验证状态的方法。纠缠态| ψ⟩= sin θ | 0⟩⊗n的验证策略+ cos θ | 1⟩⊗n $\mathinner {|{\psi }\rangle } =\sin \theta \mathinner {|{0}\rangle }^{\otimes n} +\cos \theta \mathinner {|{1}\rangle } ^{\otimes n}$ with θ∈(0,提出π / 2) $\theta \in (0,\pi /2)$。具体来说,引入了一种平均映射,并证明了它在保持验证效率的同时简化了验证策略的矩阵形式。通过对验证策略的优化,得到了具有局部投影测量的验证策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum Verification for a Class of 
         
            n
            $n$
         -Qubit Quantum Entangled States

Quantum Verification for a Class of n $n$ -Qubit Quantum Entangled States

The quantum verification is to determine whether a quantum device is intentionally deceptive by assessing the proximity between the actual output state and the expected state. As a crucial step toward the advancement of quantum technology, numerous quantum state verification methods have been proposed. However, there remains a scarcity of methods for verifying states with an arbitrary number of qubits. A verification strategy for the entangled states | ψ = sin θ | 0 n + cos θ | 1 n $\mathinner {|{\psi }\rangle } =\sin \theta \mathinner {|{0}\rangle }^{\otimes n} +\cos \theta \mathinner {|{1}\rangle } ^{\otimes n}$ with θ ( 0 , π / 2 ) $\theta \in (0,\pi /2)$ is proposed. Specifically, an average map is introduced and demonstrated that it simplifies the matrix form of the verification strategy while maintaining the verification efficiency. By optimizing the verification strategies, the strategy with local projective measurements is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信