阿波罗撞击融化记录了晚更新世快速下降的撞击率

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
A. M. Blevins, D. A. Minton, Y. H. Huang, J. Du, M. M. Tremblay, C. I. Fassett
{"title":"阿波罗撞击融化记录了晚更新世快速下降的撞击率","authors":"A. M. Blevins,&nbsp;D. A. Minton,&nbsp;Y. H. Huang,&nbsp;J. Du,&nbsp;M. M. Tremblay,&nbsp;C. I. Fassett","doi":"10.1029/2024JE008722","DOIUrl":null,"url":null,"abstract":"<p>Crater chronology functions are used to estimate absolute surface ages using the number density of observed craters. The calibration of chronology functions is done using crater counts on regions with radiometrically dated samples. Both the Neukum Production Function (NPF) and Robbins Production Function (RPF) contain lunar chronology functions anchored by Apollo and Luna samples that have measured absolute ages and are known to be from surfaces with measured crater densities. However, these functions were constructed using different data and assumptions for their respective crater counts, and their functions differ in the rate of decline during the Imbrian period (3–3.9 Ga). In particular, the RPF suggests that the decline in impact rate was much more rapid than the decline suggested by the NPF. We use a numerical impact bombardment model called CTEM to track the production and transportation of impact melts. Using CTEM, we simulated the bombardment history of the Moon under each chronology function, and calculated the age distribution of impact melts mixed in the top meter of regolith at locations corresponding to the Apollo 14–17 landing sites. These results were then compared to the age distribution of Apollo impact melts. We find the rapid decline suggested by the RPF to be a better match to the age distribution of Apollo impact melts than the gradual decline of the NPF.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008722","citationCount":"0","resultStr":"{\"title\":\"Apollo Impact Melts Record a Rapidly Declining Impact Rate in the Late Imbrian\",\"authors\":\"A. M. Blevins,&nbsp;D. A. Minton,&nbsp;Y. H. Huang,&nbsp;J. Du,&nbsp;M. M. Tremblay,&nbsp;C. I. Fassett\",\"doi\":\"10.1029/2024JE008722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crater chronology functions are used to estimate absolute surface ages using the number density of observed craters. The calibration of chronology functions is done using crater counts on regions with radiometrically dated samples. Both the Neukum Production Function (NPF) and Robbins Production Function (RPF) contain lunar chronology functions anchored by Apollo and Luna samples that have measured absolute ages and are known to be from surfaces with measured crater densities. However, these functions were constructed using different data and assumptions for their respective crater counts, and their functions differ in the rate of decline during the Imbrian period (3–3.9 Ga). In particular, the RPF suggests that the decline in impact rate was much more rapid than the decline suggested by the NPF. We use a numerical impact bombardment model called CTEM to track the production and transportation of impact melts. Using CTEM, we simulated the bombardment history of the Moon under each chronology function, and calculated the age distribution of impact melts mixed in the top meter of regolith at locations corresponding to the Apollo 14–17 landing sites. These results were then compared to the age distribution of Apollo impact melts. We find the rapid decline suggested by the RPF to be a better match to the age distribution of Apollo impact melts than the gradual decline of the NPF.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008722\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008722\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008722","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

陨石坑年代学函数用于根据观测到的陨石坑的数量密度估计绝对表面年龄。年代学功能的校准是利用陨石坑计数在具有放射性定年样品的地区完成的。Neukum生产函数(NPF)和Robbins生产函数(RPF)都包含月球年表函数,这些年表函数是由阿波罗号和月球号样品锚定的,这些样品已经测量了绝对年龄,并且已知来自测量过的陨石坑密度的表面。然而,这些函数是用不同的数据和假设来构建的,它们各自的陨石坑数量不同,它们的函数在英布良期(3-3.9 Ga)的下降速度不同。特别是,爱国阵线指出,冲击率的下降比国家爱国阵线所指出的下降要快得多。我们使用一个称为CTEM的数值撞击轰击模型来跟踪撞击熔体的产生和运输。利用CTEM模拟了各年代学函数下的月球轰击历史,并计算了阿波罗14-17着陆点对应位置表层表层混合的撞击熔体的年龄分布。然后将这些结果与阿波罗撞击熔体的年龄分布进行比较。我们发现RPF的快速下降比NPF的逐渐下降更符合阿波罗撞击熔体的年龄分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Apollo Impact Melts Record a Rapidly Declining Impact Rate in the Late Imbrian

Apollo Impact Melts Record a Rapidly Declining Impact Rate in the Late Imbrian

Crater chronology functions are used to estimate absolute surface ages using the number density of observed craters. The calibration of chronology functions is done using crater counts on regions with radiometrically dated samples. Both the Neukum Production Function (NPF) and Robbins Production Function (RPF) contain lunar chronology functions anchored by Apollo and Luna samples that have measured absolute ages and are known to be from surfaces with measured crater densities. However, these functions were constructed using different data and assumptions for their respective crater counts, and their functions differ in the rate of decline during the Imbrian period (3–3.9 Ga). In particular, the RPF suggests that the decline in impact rate was much more rapid than the decline suggested by the NPF. We use a numerical impact bombardment model called CTEM to track the production and transportation of impact melts. Using CTEM, we simulated the bombardment history of the Moon under each chronology function, and calculated the age distribution of impact melts mixed in the top meter of regolith at locations corresponding to the Apollo 14–17 landing sites. These results were then compared to the age distribution of Apollo impact melts. We find the rapid decline suggested by the RPF to be a better match to the age distribution of Apollo impact melts than the gradual decline of the NPF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信