化学计量学探索性多组学数据分析方法在机制泛癌细胞模型中的应用比较

IF 2.1 4区 化学 Q1 SOCIAL WORK
J. A. Westerhuis, A. Heintz-Buschart, H. C. J. Hoefsloot, F. M. van der Kloet, G. R. van der Ploeg, F. T. G. White
{"title":"化学计量学探索性多组学数据分析方法在机制泛癌细胞模型中的应用比较","authors":"J. A. Westerhuis,&nbsp;A. Heintz-Buschart,&nbsp;H. C. J. Hoefsloot,&nbsp;F. M. van der Kloet,&nbsp;G. R. van der Ploeg,&nbsp;F. T. G. White","doi":"10.1002/cem.70001","DOIUrl":null,"url":null,"abstract":"<p>The analysis of single cell multi-omics data is a complex task, and many explorative data analysis methods are being used to draw information from such data. This paper compares several of these methods to visualize the output of a mechanistic model under various simulated conditions. The analysis methods include PCA, PARAFAC, ASCA, MASCARA, COVSCA, P-ESCA, and PE-ASCA. These techniques, applied to high-dimensional data such as gene expression and protein levels, assess correlations across time series and experimental conditions. The study uses a complex mechanistic model of MCF10A cancer cells, simulating interactions between signaling pathways related to cell growth and division. Results show that while methods like PCA PARAFAC and ASCA reveal time-dependent variations in protein data, mRNA data exhibit minimal systematic variation. MASCARA offers unique insights by identifying genes linked to specific pathways. This work highlights the potential and limitations of various data analysis methods in understanding multi-omics data, particularly in single-cell contexts where experimental variation and stochastic processes complicate interpretation.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70001","citationCount":"0","resultStr":"{\"title\":\"Comparison of Chemometric Explorative Multi-Omics Data Analysis Methods Applied to a Mechanistic Pan-Cancer Cell Model\",\"authors\":\"J. A. Westerhuis,&nbsp;A. Heintz-Buschart,&nbsp;H. C. J. Hoefsloot,&nbsp;F. M. van der Kloet,&nbsp;G. R. van der Ploeg,&nbsp;F. T. G. White\",\"doi\":\"10.1002/cem.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of single cell multi-omics data is a complex task, and many explorative data analysis methods are being used to draw information from such data. This paper compares several of these methods to visualize the output of a mechanistic model under various simulated conditions. The analysis methods include PCA, PARAFAC, ASCA, MASCARA, COVSCA, P-ESCA, and PE-ASCA. These techniques, applied to high-dimensional data such as gene expression and protein levels, assess correlations across time series and experimental conditions. The study uses a complex mechanistic model of MCF10A cancer cells, simulating interactions between signaling pathways related to cell growth and division. Results show that while methods like PCA PARAFAC and ASCA reveal time-dependent variations in protein data, mRNA data exhibit minimal systematic variation. MASCARA offers unique insights by identifying genes linked to specific pathways. This work highlights the potential and limitations of various data analysis methods in understanding multi-omics data, particularly in single-cell contexts where experimental variation and stochastic processes complicate interpretation.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.70001\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70001","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

单细胞多组学数据的分析是一项复杂的任务,许多探索性的数据分析方法被用来从这些数据中提取信息。本文对几种方法进行了比较,以便在各种模拟条件下将机械模型的输出可视化。分析方法包括PCA、PARAFAC、ASCA、MASCARA、COVSCA、P-ESCA、PE-ASCA。这些技术应用于高维数据,如基因表达和蛋白质水平,评估时间序列和实验条件之间的相关性。该研究使用MCF10A癌细胞的复杂机制模型,模拟与细胞生长和分裂相关的信号通路之间的相互作用。结果表明,虽然PCA PARAFAC和ASCA等方法揭示了蛋白质数据的时间依赖性变化,但mRNA数据显示出最小的系统变化。睫毛膏通过识别与特定途径相关的基因,提供了独特的见解。这项工作强调了各种数据分析方法在理解多组学数据方面的潜力和局限性,特别是在实验变化和随机过程使解释复杂化的单细胞环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of Chemometric Explorative Multi-Omics Data Analysis Methods Applied to a Mechanistic Pan-Cancer Cell Model

Comparison of Chemometric Explorative Multi-Omics Data Analysis Methods Applied to a Mechanistic Pan-Cancer Cell Model

The analysis of single cell multi-omics data is a complex task, and many explorative data analysis methods are being used to draw information from such data. This paper compares several of these methods to visualize the output of a mechanistic model under various simulated conditions. The analysis methods include PCA, PARAFAC, ASCA, MASCARA, COVSCA, P-ESCA, and PE-ASCA. These techniques, applied to high-dimensional data such as gene expression and protein levels, assess correlations across time series and experimental conditions. The study uses a complex mechanistic model of MCF10A cancer cells, simulating interactions between signaling pathways related to cell growth and division. Results show that while methods like PCA PARAFAC and ASCA reveal time-dependent variations in protein data, mRNA data exhibit minimal systematic variation. MASCARA offers unique insights by identifying genes linked to specific pathways. This work highlights the potential and limitations of various data analysis methods in understanding multi-omics data, particularly in single-cell contexts where experimental variation and stochastic processes complicate interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信