黄芩素通过E2F转录因子1/介质复合物亚基7轴失活抑制肝癌细胞的肿瘤特性

IF 3.3 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pinghui Song, Naiying Shen, Zhongkun Wu, Sha He
{"title":"黄芩素通过E2F转录因子1/介质复合物亚基7轴失活抑制肝癌细胞的肿瘤特性","authors":"Pinghui Song,&nbsp;Naiying Shen,&nbsp;Zhongkun Wu,&nbsp;Sha He","doi":"10.1111/cbdd.70063","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with poor prognosis. Baicalein, a natural compound, can regulate multiple cellular processes in various cancer types. In this study, we investigated the role of baicalein in regulating HCC and explored its potential mechanism. The expression of mediator complex subunit 7 (MED7) and E2F transcription factor 1 (E2F1) was analyzed by quantitative real-time polymerase chain reaction or Western blotting assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2′-deoxyuridine assay. Cell migration was analyzed by transwell assay and wound-healing assay. Cell invasion was analyzed by transwell assay. Angiogenic ability of HCC cells was assessed by tube formation assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to validate the association between E2F1 and MED7. The xenograft mouse model assay was conducted to determine the effects of baicalein and E2F1 overexpression on tumor formation. Immunohistochemistry assay was used to determine positive expression rates of proteins. Upregulation of MED7 and E2F1 expression was observed in both HCC tissues and cells. Knockdown of MED7 suppressed HCC cell proliferation, migration, invasion, and tube formation. Transcriptional activation of MED7 by E2F1 was demonstrated in HCC cells. Overexpression of MED7 mitigated the effects induced by E2F1 depletion in HCC cells. Additionally, baicalein treatment effectively inhibited the tumor property of HCC cells by decreasing E2F1 expression in both in vitro and in vivo models. Baicalein inhibited the tumor property of HCC cells through the inactivation of the E2F1/MED7 axis, highlighting its potential clinical application in the treatment of HCC.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baicalein Inhibits Tumor Property of Hepatocellular Carcinoma Cells Through the Inactivation of the E2F Transcription Factor 1/Mediator Complex Subunit 7 Axis\",\"authors\":\"Pinghui Song,&nbsp;Naiying Shen,&nbsp;Zhongkun Wu,&nbsp;Sha He\",\"doi\":\"10.1111/cbdd.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with poor prognosis. Baicalein, a natural compound, can regulate multiple cellular processes in various cancer types. In this study, we investigated the role of baicalein in regulating HCC and explored its potential mechanism. The expression of mediator complex subunit 7 (MED7) and E2F transcription factor 1 (E2F1) was analyzed by quantitative real-time polymerase chain reaction or Western blotting assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2′-deoxyuridine assay. Cell migration was analyzed by transwell assay and wound-healing assay. Cell invasion was analyzed by transwell assay. Angiogenic ability of HCC cells was assessed by tube formation assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to validate the association between E2F1 and MED7. The xenograft mouse model assay was conducted to determine the effects of baicalein and E2F1 overexpression on tumor formation. Immunohistochemistry assay was used to determine positive expression rates of proteins. Upregulation of MED7 and E2F1 expression was observed in both HCC tissues and cells. Knockdown of MED7 suppressed HCC cell proliferation, migration, invasion, and tube formation. Transcriptional activation of MED7 by E2F1 was demonstrated in HCC cells. Overexpression of MED7 mitigated the effects induced by E2F1 depletion in HCC cells. Additionally, baicalein treatment effectively inhibited the tumor property of HCC cells by decreasing E2F1 expression in both in vitro and in vivo models. Baicalein inhibited the tumor property of HCC cells through the inactivation of the E2F1/MED7 axis, highlighting its potential clinical application in the treatment of HCC.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"105 2\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70063\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是一种高度侵袭性的恶性肿瘤,预后不良。黄芩素是一种天然化合物,可以调节多种癌症类型的多种细胞过程。在本研究中,我们研究了黄芩苷在HCC中的调节作用,并探讨了其潜在的机制。采用实时荧光定量聚合酶链反应或Western blotting法分析中介体复合物亚基7 (MED7)和E2F转录因子1 (E2F1)的表达。采用细胞集落形成法和5-乙基-2′-脱氧尿苷法测定细胞增殖情况。采用transwell法和创面愈合法分析细胞迁移情况。transwell法检测细胞侵袭情况。用成管实验评估肝癌细胞的血管生成能力。采用双荧光素酶报告试验和染色质免疫沉淀试验验证E2F1和MED7之间的关联。通过异种移植小鼠模型实验,研究黄芩素和E2F1过表达对肿瘤形成的影响。免疫组化法检测蛋白阳性表达率。在HCC组织和细胞中均观察到MED7和E2F1表达上调。敲低MED7可抑制HCC细胞的增殖、迁移、侵袭和小管形成。在HCC细胞中证实了E2F1对MED7的转录激活。MED7的过表达减轻了肝癌细胞中E2F1缺失引起的影响。此外,黄芩素治疗通过降低体内和体外模型中E2F1的表达,有效地抑制了HCC细胞的肿瘤特性。黄芩苷通过使E2F1/MED7轴失活,抑制HCC细胞的肿瘤特性,突出了其在HCC治疗中的潜在临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Baicalein Inhibits Tumor Property of Hepatocellular Carcinoma Cells Through the Inactivation of the E2F Transcription Factor 1/Mediator Complex Subunit 7 Axis

Baicalein Inhibits Tumor Property of Hepatocellular Carcinoma Cells Through the Inactivation of the E2F Transcription Factor 1/Mediator Complex Subunit 7 Axis

Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with poor prognosis. Baicalein, a natural compound, can regulate multiple cellular processes in various cancer types. In this study, we investigated the role of baicalein in regulating HCC and explored its potential mechanism. The expression of mediator complex subunit 7 (MED7) and E2F transcription factor 1 (E2F1) was analyzed by quantitative real-time polymerase chain reaction or Western blotting assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2′-deoxyuridine assay. Cell migration was analyzed by transwell assay and wound-healing assay. Cell invasion was analyzed by transwell assay. Angiogenic ability of HCC cells was assessed by tube formation assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to validate the association between E2F1 and MED7. The xenograft mouse model assay was conducted to determine the effects of baicalein and E2F1 overexpression on tumor formation. Immunohistochemistry assay was used to determine positive expression rates of proteins. Upregulation of MED7 and E2F1 expression was observed in both HCC tissues and cells. Knockdown of MED7 suppressed HCC cell proliferation, migration, invasion, and tube formation. Transcriptional activation of MED7 by E2F1 was demonstrated in HCC cells. Overexpression of MED7 mitigated the effects induced by E2F1 depletion in HCC cells. Additionally, baicalein treatment effectively inhibited the tumor property of HCC cells by decreasing E2F1 expression in both in vitro and in vivo models. Baicalein inhibited the tumor property of HCC cells through the inactivation of the E2F1/MED7 axis, highlighting its potential clinical application in the treatment of HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信