{"title":"用多起点超启发式方法解决有设施服务的可靠 p 中值问题","authors":"Edukondalu Chappidi, Alok Singh","doi":"10.1007/s10489-024-05995-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents two hyper-heuristic approaches for solving a facility location problem called reliable <i>p</i>-median problem with at facility service (RpMF). In RpMF, service is provided to customers at the facility locations and it is closely related to the <i>p</i>-median problem. <i>p</i>-median problem is concerned with locating <i>p</i>-facilities while minimizing the total distance traveled by the customers to the corresponding nearest facilities and it is an <span>\\(\\mathcal{N}\\mathcal{P}\\)</span>-hard problem. But according to the <i>p</i>-median problem, it doesn’t consider the possibility of facility failures. On the other hand, RpMF assumes that facilities can fail and the customers assigned to that facility do not know about the facility failure till they reach the facility for service. So, the customers have to travel from failed facilities to other functioning facilities to receive service. RpMF deals with locating <i>p</i> facilities to minimize the cost of serving the customers while considering facility failures. We have proposed two multi-start hyper-heuristic based approaches that are based on greedy and random selection mechanisms to solve the RpMF. The solutions obtained through hyper-heuristics are improved further via a local search. The two proposed hyper-heuristic approaches are evaluated on 405 RpMF benchmark instances from the literature. Experimental results prove the effectiveness of the proposed approaches in comparison to the state-of-the-art approaches available in literature for the RpMF.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-024-05995-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Solution of reliable p-median problem with at-facility service using multi-start hyper-heuristic approaches\",\"authors\":\"Edukondalu Chappidi, Alok Singh\",\"doi\":\"10.1007/s10489-024-05995-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents two hyper-heuristic approaches for solving a facility location problem called reliable <i>p</i>-median problem with at facility service (RpMF). In RpMF, service is provided to customers at the facility locations and it is closely related to the <i>p</i>-median problem. <i>p</i>-median problem is concerned with locating <i>p</i>-facilities while minimizing the total distance traveled by the customers to the corresponding nearest facilities and it is an <span>\\\\(\\\\mathcal{N}\\\\mathcal{P}\\\\)</span>-hard problem. But according to the <i>p</i>-median problem, it doesn’t consider the possibility of facility failures. On the other hand, RpMF assumes that facilities can fail and the customers assigned to that facility do not know about the facility failure till they reach the facility for service. So, the customers have to travel from failed facilities to other functioning facilities to receive service. RpMF deals with locating <i>p</i> facilities to minimize the cost of serving the customers while considering facility failures. We have proposed two multi-start hyper-heuristic based approaches that are based on greedy and random selection mechanisms to solve the RpMF. The solutions obtained through hyper-heuristics are improved further via a local search. The two proposed hyper-heuristic approaches are evaluated on 405 RpMF benchmark instances from the literature. Experimental results prove the effectiveness of the proposed approaches in comparison to the state-of-the-art approaches available in literature for the RpMF.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-024-05995-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05995-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05995-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Solution of reliable p-median problem with at-facility service using multi-start hyper-heuristic approaches
This paper presents two hyper-heuristic approaches for solving a facility location problem called reliable p-median problem with at facility service (RpMF). In RpMF, service is provided to customers at the facility locations and it is closely related to the p-median problem. p-median problem is concerned with locating p-facilities while minimizing the total distance traveled by the customers to the corresponding nearest facilities and it is an \(\mathcal{N}\mathcal{P}\)-hard problem. But according to the p-median problem, it doesn’t consider the possibility of facility failures. On the other hand, RpMF assumes that facilities can fail and the customers assigned to that facility do not know about the facility failure till they reach the facility for service. So, the customers have to travel from failed facilities to other functioning facilities to receive service. RpMF deals with locating p facilities to minimize the cost of serving the customers while considering facility failures. We have proposed two multi-start hyper-heuristic based approaches that are based on greedy and random selection mechanisms to solve the RpMF. The solutions obtained through hyper-heuristics are improved further via a local search. The two proposed hyper-heuristic approaches are evaluated on 405 RpMF benchmark instances from the literature. Experimental results prove the effectiveness of the proposed approaches in comparison to the state-of-the-art approaches available in literature for the RpMF.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.