学习不连续多模态策略的复合高斯过程流

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shu-yuan Wang, Hikaru Sasaki, Takamitsu Matsubara
{"title":"学习不连续多模态策略的复合高斯过程流","authors":"Shu-yuan Wang,&nbsp;Hikaru Sasaki,&nbsp;Takamitsu Matsubara","doi":"10.1007/s10489-025-06302-x","DOIUrl":null,"url":null,"abstract":"<div><p>Learning control policies for real-world robotic tasks often involve challenges such as multimodality, local discontinuities, and the need for computational efficiency. These challenges arise from the complexity of robotic environments, where multiple solutions may coexist. To address these issues, we propose Composite Gaussian Processes Flows (CGP-Flows), a novel semi-parametric model for robotic policy. CGP-Flows integrate Overlapping Mixtures of Gaussian Processes (OMGPs) with the Continuous Normalizing Flows (CNFs), enabling them to model complex policies addressing multimodality and local discontinuities. This hybrid approach retains the computational efficiency of OMGPs while incorporating the flexibility of CNFs. Experiments conducted in both simulated and real-world robotic tasks demonstrate that CGP-flows significantly improve performance in modeling control policies. In a simulation task, we confirmed that CGP-Flows had a higher success rate compared to the baseline method, and the success rate of GCP-Flow was significantly different from the success rate of other baselines in chi-square tests.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Gaussian processes flows for learning discontinuous multimodal policies\",\"authors\":\"Shu-yuan Wang,&nbsp;Hikaru Sasaki,&nbsp;Takamitsu Matsubara\",\"doi\":\"10.1007/s10489-025-06302-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Learning control policies for real-world robotic tasks often involve challenges such as multimodality, local discontinuities, and the need for computational efficiency. These challenges arise from the complexity of robotic environments, where multiple solutions may coexist. To address these issues, we propose Composite Gaussian Processes Flows (CGP-Flows), a novel semi-parametric model for robotic policy. CGP-Flows integrate Overlapping Mixtures of Gaussian Processes (OMGPs) with the Continuous Normalizing Flows (CNFs), enabling them to model complex policies addressing multimodality and local discontinuities. This hybrid approach retains the computational efficiency of OMGPs while incorporating the flexibility of CNFs. Experiments conducted in both simulated and real-world robotic tasks demonstrate that CGP-flows significantly improve performance in modeling control policies. In a simulation task, we confirmed that CGP-Flows had a higher success rate compared to the baseline method, and the success rate of GCP-Flow was significantly different from the success rate of other baselines in chi-square tests.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06302-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06302-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现实世界机器人任务的学习控制策略通常涉及多模态、局部不连续和计算效率需求等挑战。这些挑战来自机器人环境的复杂性,其中多种解决方案可能共存。为了解决这些问题,我们提出了一种新的机器人策略半参数模型——复合高斯过程流(CGP-Flows)。cgp流将高斯过程的重叠混合(omgp)与连续归一化流(CNFs)集成在一起,使它们能够模拟处理多模态和局部不连续的复杂策略。这种混合方法保留了omgp的计算效率,同时结合了cnf的灵活性。在模拟和现实世界机器人任务中进行的实验表明,cgp流显著提高了建模控制策略的性能。在模拟任务中,我们证实了GCP-Flow方法比基线方法具有更高的成功率,并且在卡方检验中GCP-Flow方法的成功率与其他基线方法的成功率有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite Gaussian processes flows for learning discontinuous multimodal policies

Composite Gaussian processes flows for learning discontinuous multimodal policies

Learning control policies for real-world robotic tasks often involve challenges such as multimodality, local discontinuities, and the need for computational efficiency. These challenges arise from the complexity of robotic environments, where multiple solutions may coexist. To address these issues, we propose Composite Gaussian Processes Flows (CGP-Flows), a novel semi-parametric model for robotic policy. CGP-Flows integrate Overlapping Mixtures of Gaussian Processes (OMGPs) with the Continuous Normalizing Flows (CNFs), enabling them to model complex policies addressing multimodality and local discontinuities. This hybrid approach retains the computational efficiency of OMGPs while incorporating the flexibility of CNFs. Experiments conducted in both simulated and real-world robotic tasks demonstrate that CGP-flows significantly improve performance in modeling control policies. In a simulation task, we confirmed that CGP-Flows had a higher success rate compared to the baseline method, and the success rate of GCP-Flow was significantly different from the success rate of other baselines in chi-square tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信