评价干旱特征的三元多尺度标准化干旱指数(TMSDI)的建立

IF 3 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Aamina Batool, Veysi KARTAL, Zulfiqar Ali
{"title":"评价干旱特征的三元多尺度标准化干旱指数(TMSDI)的建立","authors":"Aamina Batool,&nbsp;Veysi KARTAL,&nbsp;Zulfiqar Ali","doi":"10.1007/s10661-025-13742-y","DOIUrl":null,"url":null,"abstract":"<div><p>Drought is an extensive natural hazard influenced by human activities. Drought has a substantial impact on environmental systems and socioeconomic activities globally, posing serious challenges to water resources, agriculture, and ecosystems. Drought as a complicated natural occurrence is difficult to monitor and anticipate. However, to address the detrimental issues of drought, this study examined the innovative Trivariate Multiscalar–Standardized Drought Index (TMSDI). The climatic factors of precipitation, temperature, and Normalized Difference Vegetation Index (NDVI) are components in the development of TMSDI. To check the association of the innovative index with the another drought indices, this study evaluated correlations between the proposed index (TMSDI) and traditional drought indices, i.e., the Standardized Precipitation Index (SPI) and the Standardized Precipitation Temperature Index (SPTI) at 1-, 3-, 6-, 9-, 12-, 24-, and 48-month time scales. The outcomes demonstrate that there is a consistent relationship between the TMSDI and SPI due to higher values of correlation. The lower correlation between TMSDI and SPTI shows that there is a substantial and consistent relationship between TMSDI and SPI than TMSDI and SPTI. Moreover, the long-term behavior of different drought conditions indicates that extreme drought is more likely than extreme wet across the Markov chain’s Steady States Probabilities (SSPs). Consequently, the proposed index (TMSDI) is recommended as an effective tool to precisely and accurately monitor drought conditions over different time scales within different climate factors.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13742-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of Trivariate Multiscalar–Standardized Drought Index (TMSDI) for assessing drought characteristics\",\"authors\":\"Aamina Batool,&nbsp;Veysi KARTAL,&nbsp;Zulfiqar Ali\",\"doi\":\"10.1007/s10661-025-13742-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drought is an extensive natural hazard influenced by human activities. Drought has a substantial impact on environmental systems and socioeconomic activities globally, posing serious challenges to water resources, agriculture, and ecosystems. Drought as a complicated natural occurrence is difficult to monitor and anticipate. However, to address the detrimental issues of drought, this study examined the innovative Trivariate Multiscalar–Standardized Drought Index (TMSDI). The climatic factors of precipitation, temperature, and Normalized Difference Vegetation Index (NDVI) are components in the development of TMSDI. To check the association of the innovative index with the another drought indices, this study evaluated correlations between the proposed index (TMSDI) and traditional drought indices, i.e., the Standardized Precipitation Index (SPI) and the Standardized Precipitation Temperature Index (SPTI) at 1-, 3-, 6-, 9-, 12-, 24-, and 48-month time scales. The outcomes demonstrate that there is a consistent relationship between the TMSDI and SPI due to higher values of correlation. The lower correlation between TMSDI and SPTI shows that there is a substantial and consistent relationship between TMSDI and SPI than TMSDI and SPTI. Moreover, the long-term behavior of different drought conditions indicates that extreme drought is more likely than extreme wet across the Markov chain’s Steady States Probabilities (SSPs). Consequently, the proposed index (TMSDI) is recommended as an effective tool to precisely and accurately monitor drought conditions over different time scales within different climate factors.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10661-025-13742-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13742-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13742-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

干旱是人类活动影响下广泛存在的自然灾害。干旱对全球环境系统和社会经济活动产生重大影响,对水资源、农业和生态系统构成严重挑战。干旱是一种复杂的自然现象,难以监测和预测。然而,为了解决干旱的有害问题,本研究检验了创新的三变量多尺度标准化干旱指数(TMSDI)。降水、温度和归一化植被指数(NDVI)等气候因子是TMSDI发展的组成部分。为了检验创新指数与其他干旱指数的相关性,本研究在1个月、3个月、6个月、9个月、12个月、24个月和48个月的时间尺度上评估了创新指数(TMSDI)与传统干旱指数(标准化降水指数(SPI)和标准化降水温度指数(SPTI))的相关性。结果表明,由于相关值较高,TMSDI与SPI之间存在一致的关系。TMSDI与SPTI的相关性较低,说明TMSDI与SPI之间的关系比TMSDI与SPTI之间的关系更为实质性和一致性。此外,不同干旱条件的长期行为表明,在马尔可夫链的稳态概率(ssp)上,极端干旱比极端潮湿更有可能发生。因此,建议将TMSDI作为一种有效的工具,在不同气候因子的不同时间尺度上精确监测干旱状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Trivariate Multiscalar–Standardized Drought Index (TMSDI) for assessing drought characteristics

Drought is an extensive natural hazard influenced by human activities. Drought has a substantial impact on environmental systems and socioeconomic activities globally, posing serious challenges to water resources, agriculture, and ecosystems. Drought as a complicated natural occurrence is difficult to monitor and anticipate. However, to address the detrimental issues of drought, this study examined the innovative Trivariate Multiscalar–Standardized Drought Index (TMSDI). The climatic factors of precipitation, temperature, and Normalized Difference Vegetation Index (NDVI) are components in the development of TMSDI. To check the association of the innovative index with the another drought indices, this study evaluated correlations between the proposed index (TMSDI) and traditional drought indices, i.e., the Standardized Precipitation Index (SPI) and the Standardized Precipitation Temperature Index (SPTI) at 1-, 3-, 6-, 9-, 12-, 24-, and 48-month time scales. The outcomes demonstrate that there is a consistent relationship between the TMSDI and SPI due to higher values of correlation. The lower correlation between TMSDI and SPTI shows that there is a substantial and consistent relationship between TMSDI and SPI than TMSDI and SPTI. Moreover, the long-term behavior of different drought conditions indicates that extreme drought is more likely than extreme wet across the Markov chain’s Steady States Probabilities (SSPs). Consequently, the proposed index (TMSDI) is recommended as an effective tool to precisely and accurately monitor drought conditions over different time scales within different climate factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信