紧到一个乘法常数的Turán系统的构造

IF 1.5 1区 数学 Q1 MATHEMATICS
Oleg Pikhurko
{"title":"紧到一个乘法常数的Turán系统的构造","authors":"Oleg Pikhurko","doi":"10.1016/j.aim.2025.110148","DOIUrl":null,"url":null,"abstract":"<div><div>For positive integers <span><math><mi>n</mi><mo>⩾</mo><mi>s</mi><mo>&gt;</mo><mi>r</mi></math></span>, the <em>Turán function</em> <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> is the smallest size of an <em>r</em>-graph with <em>n</em> vertices such that every set of <em>s</em> vertices contains at least one edge. Also, define the <em>Turán density</em> <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> as the limit of <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. The question of estimating these parameters received a lot of attention after it was first raised by Turán in 1941. A trivial lower bound is <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩾</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In the 1990s, de Caen conjectured that <span><math><mi>r</mi><mo>⋅</mo><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>)</mo><mo>→</mo><mo>∞</mo></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span> and offered 500 Canadian dollars for resolving this question.</div><div>We disprove this conjecture by showing more strongly that for every integer <span><math><mi>R</mi><mo>⩾</mo><mn>1</mn></math></span> there is <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> (in fact, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> can be taken to grow as <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><mi>R</mi><mi>ln</mi><mo>⁡</mo><mi>R</mi></math></span>) such that <span><math><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mi>R</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩽</mo><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>r</mi><mo>+</mo><mi>R</mi></mrow></mtd></mtr><mtr><mtd><mi>R</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, that is, the trivial lower bound is tight for every <em>R</em> up to a multiplicative constant <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"464 ","pages":"Article 110148"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructions of Turán systems that are tight up to a multiplicative constant\",\"authors\":\"Oleg Pikhurko\",\"doi\":\"10.1016/j.aim.2025.110148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For positive integers <span><math><mi>n</mi><mo>⩾</mo><mi>s</mi><mo>&gt;</mo><mi>r</mi></math></span>, the <em>Turán function</em> <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> is the smallest size of an <em>r</em>-graph with <em>n</em> vertices such that every set of <em>s</em> vertices contains at least one edge. Also, define the <em>Turán density</em> <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> as the limit of <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. The question of estimating these parameters received a lot of attention after it was first raised by Turán in 1941. A trivial lower bound is <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩾</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In the 1990s, de Caen conjectured that <span><math><mi>r</mi><mo>⋅</mo><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>)</mo><mo>→</mo><mo>∞</mo></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span> and offered 500 Canadian dollars for resolving this question.</div><div>We disprove this conjecture by showing more strongly that for every integer <span><math><mi>R</mi><mo>⩾</mo><mn>1</mn></math></span> there is <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> (in fact, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> can be taken to grow as <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><mi>R</mi><mi>ln</mi><mo>⁡</mo><mi>R</mi></math></span>) such that <span><math><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mi>R</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩽</mo><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>r</mi><mo>+</mo><mi>R</mi></mrow></mtd></mtr><mtr><mtd><mi>R</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, that is, the trivial lower bound is tight for every <em>R</em> up to a multiplicative constant <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"464 \",\"pages\":\"Article 110148\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000465\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000465","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数n≠s>;r, Turán函数T(n,s,r)是具有n个顶点的r-图的最小大小,使得s个顶点的每一组至少包含一条边。同样,定义Turán密度t(s,r)为t(n,s,r)/(nr)的极限为n→∞。估算这些参数的问题在1941年由Turán首次提出后受到了广泛关注。一个平凡的下界是t(s,r)小于1/(ss−r)。在20世纪90年代,de Caen推测r⋅t(r+1,r)→∞为r→∞,并悬赏500加元来解决这个问题。我们通过更有力地证明对于每个整数R小于1都有μR(事实上,μR可以被看作是(1+o(1))Rln (R)),使得t(R+ R, R)≤(μR+o(1))/(R+ RR)为R→∞来证明这一猜想,也就是说,对于每个R直到一个乘法常数μR来说,平凡的下界是紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructions of Turán systems that are tight up to a multiplicative constant
For positive integers ns>r, the Turán function T(n,s,r) is the smallest size of an r-graph with n vertices such that every set of s vertices contains at least one edge. Also, define the Turán density t(s,r) as the limit of T(n,s,r)/(nr) as n. The question of estimating these parameters received a lot of attention after it was first raised by Turán in 1941. A trivial lower bound is t(s,r)1/(ssr). In the 1990s, de Caen conjectured that rt(r+1,r) as r and offered 500 Canadian dollars for resolving this question.
We disprove this conjecture by showing more strongly that for every integer R1 there is μR (in fact, μR can be taken to grow as (1+o(1))RlnR) such that t(r+R,r)(μR+o(1))/(r+RR) as r, that is, the trivial lower bound is tight for every R up to a multiplicative constant μR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信