GGG衬底在毫开尔文温度下对YIG的阻尼增强

Rostyslav O. Serha , Andrey A. Voronov , David Schmoll , Rebecca Klingbeil , Sebastian Knauer , Sabri Koraltan , Ekaterina Pribytova , Morris Lindner , Timmy Reimann , Carsten Dubs , Claas Abert , Roman Verba , Michal Urbánek , Dieter Suess , Andrii V. Chumak
{"title":"GGG衬底在毫开尔文温度下对YIG的阻尼增强","authors":"Rostyslav O. Serha ,&nbsp;Andrey A. Voronov ,&nbsp;David Schmoll ,&nbsp;Rebecca Klingbeil ,&nbsp;Sebastian Knauer ,&nbsp;Sabri Koraltan ,&nbsp;Ekaterina Pribytova ,&nbsp;Morris Lindner ,&nbsp;Timmy Reimann ,&nbsp;Carsten Dubs ,&nbsp;Claas Abert ,&nbsp;Roman Verba ,&nbsp;Michal Urbánek ,&nbsp;Dieter Suess ,&nbsp;Andrii V. Chumak","doi":"10.1016/j.mtquan.2025.100025","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50<!--> <!-->K poses a challenge for quantum applications. Here, we study the damping in a 97<!--> <!-->nm-thick YIG film on a <span><math><mrow><mn>500</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>-thick GGG substrate at temperatures down to 30<!--> <!-->mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18<!--> <!-->GHz and temperatures below 2<!--> <!-->K and frequencies above 10<!--> <!-->GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"5 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damping enhancement in YIG at millikelvin temperatures due to GGG substrate\",\"authors\":\"Rostyslav O. Serha ,&nbsp;Andrey A. Voronov ,&nbsp;David Schmoll ,&nbsp;Rebecca Klingbeil ,&nbsp;Sebastian Knauer ,&nbsp;Sabri Koraltan ,&nbsp;Ekaterina Pribytova ,&nbsp;Morris Lindner ,&nbsp;Timmy Reimann ,&nbsp;Carsten Dubs ,&nbsp;Claas Abert ,&nbsp;Roman Verba ,&nbsp;Michal Urbánek ,&nbsp;Dieter Suess ,&nbsp;Andrii V. Chumak\",\"doi\":\"10.1016/j.mtquan.2025.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50<!--> <!-->K poses a challenge for quantum applications. Here, we study the damping in a 97<!--> <!-->nm-thick YIG film on a <span><math><mrow><mn>500</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>-thick GGG substrate at temperatures down to 30<!--> <!-->mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18<!--> <!-->GHz and temperatures below 2<!--> <!-->K and frequencies above 10<!--> <!-->GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.</div></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"5 \",\"pages\":\"Article 100025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257825000034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子磁振学旨在利用磁振子的量子力学特性来实现纳米级量子信息技术。铁磁性钇铁石榴石(YIG)具有最长的磁振子寿命,是通常生长在钆镓石榴石(GGG)衬底上的关键材料,具有结构相容性。然而,在低于50 K的YIG/GGG系统中增加的磁阻尼对量子应用提出了挑战。本文利用铁磁共振(FMR)技术研究了在温度低至30 mK时,在500μm厚GGG衬底上制备的97 nm厚YIG薄膜的阻尼特性。我们发现,在毫开尔文温度下观察到的FMR线宽增加十倍的主要物理机制是由部分磁化的顺磁GGG衬底产生的不均匀偏置磁场。数值模拟和分析理论表明,ggg驱动的线宽增强可达6.7倍。此外,在18 GHz以上的低温和频率下,以及在2 K以下和10 GHz以上的频率下,FMR线宽偏离粘性吉尔伯特-阻尼模型。这些结果允许部分消除归因于GGG的阻尼机制,这对于固态量子技术的进步是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damping enhancement in YIG at millikelvin temperatures due to GGG substrate
Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50 K poses a challenge for quantum applications. Here, we study the damping in a 97 nm-thick YIG film on a 500μm-thick GGG substrate at temperatures down to 30 mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18 GHz and temperatures below 2 K and frequencies above 10 GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信