治疗计划系统外的超快速、一键式放疗治疗计划

IF 3.4 Q2 ONCOLOGY
Gerd Heilemann , Lukas Zimmermann , Tufve Nyholm , Attila Simkó , Joachim Widder , Gregor Goldner , Dietmar Georg , Peter Kuess
{"title":"治疗计划系统外的超快速、一键式放疗治疗计划","authors":"Gerd Heilemann ,&nbsp;Lukas Zimmermann ,&nbsp;Tufve Nyholm ,&nbsp;Attila Simkó ,&nbsp;Joachim Widder ,&nbsp;Gregor Goldner ,&nbsp;Dietmar Georg ,&nbsp;Peter Kuess","doi":"10.1016/j.phro.2025.100724","DOIUrl":null,"url":null,"abstract":"<div><div>We present an automated radiation oncology treatment planning pipeline that operates between segmentation and plan review, minimizing manual interaction and reliance on traditional planning systems. Two AI models work in sequence: the first generates a dose distribution, and the second creates a deliverable DICOM-RT plan. Trained and validated on 276 plans, and tested on 151 datasets, the system produced clinically deliverable plans—complete with all VMAT parameters—in about 38 s. These plans met target coverage and most organ-at-risk constraints. This proof-of-concept demonstrates the feasibility of generating high-quality, deliverable DICOM plans within seconds.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100724"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-fast, one-click radiotherapy treatment planning outside a treatment planning system\",\"authors\":\"Gerd Heilemann ,&nbsp;Lukas Zimmermann ,&nbsp;Tufve Nyholm ,&nbsp;Attila Simkó ,&nbsp;Joachim Widder ,&nbsp;Gregor Goldner ,&nbsp;Dietmar Georg ,&nbsp;Peter Kuess\",\"doi\":\"10.1016/j.phro.2025.100724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an automated radiation oncology treatment planning pipeline that operates between segmentation and plan review, minimizing manual interaction and reliance on traditional planning systems. Two AI models work in sequence: the first generates a dose distribution, and the second creates a deliverable DICOM-RT plan. Trained and validated on 276 plans, and tested on 151 datasets, the system produced clinically deliverable plans—complete with all VMAT parameters—in about 38 s. These plans met target coverage and most organ-at-risk constraints. This proof-of-concept demonstrates the feasibility of generating high-quality, deliverable DICOM plans within seconds.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"33 \",\"pages\":\"Article 100724\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625000296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自动化的放射肿瘤学治疗计划流程,它在分割和计划审查之间运行,最大限度地减少了人工交互和对传统计划系统的依赖。两个人工智能模型按顺序工作:第一个生成剂量分布,第二个创建可交付的DICOM-RT计划。经过276个方案的训练和验证,并在151个数据集上进行了测试,该系统在38秒内生成了临床可交付的方案,并完成了所有VMAT参数。这些计划满足了目标覆盖率和大多数面临风险的器官限制。这个概念验证证明了在几秒钟内生成高质量、可交付的DICOM计划的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-fast, one-click radiotherapy treatment planning outside a treatment planning system
We present an automated radiation oncology treatment planning pipeline that operates between segmentation and plan review, minimizing manual interaction and reliance on traditional planning systems. Two AI models work in sequence: the first generates a dose distribution, and the second creates a deliverable DICOM-RT plan. Trained and validated on 276 plans, and tested on 151 datasets, the system produced clinically deliverable plans—complete with all VMAT parameters—in about 38 s. These plans met target coverage and most organ-at-risk constraints. This proof-of-concept demonstrates the feasibility of generating high-quality, deliverable DICOM plans within seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信