Toda系统的概率分布:通往稳态的奇异路径

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Srdjan Petrović , Nikola Starčević , Nace Stojanov , Liang Huang
{"title":"Toda系统的概率分布:通往稳态的奇异路径","authors":"Srdjan Petrović ,&nbsp;Nikola Starčević ,&nbsp;Nace Stojanov ,&nbsp;Liang Huang","doi":"10.1016/j.physd.2025.134576","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports on the evolution of the probability distribution in the configuration space of the two-dimensional Toda system. The distribution is characterized by singularities, which predominantly take two forms: double-cusped triangular lines and lines parallel to the equipotential line that defines the accessible region. Over time, the number of these singular patterns increases linearly. Consequently, at very large times, the singular patterns fully occupy the accessible area, resulting in a steady state probability distribution with a pronounced singular peak at the center.</div><div>Changes in the singular patterns arise solely from the system's intrinsic dynamics rather than variations in its parameters, emphasizing the system's self-organizing nature over time. These results provide a deeper understanding of the collective motion of particles in symmetric, bounded, two-dimensional conservative systems.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"473 ","pages":"Article 134576"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability distribution in the Toda system: The singular route to a steady state\",\"authors\":\"Srdjan Petrović ,&nbsp;Nikola Starčević ,&nbsp;Nace Stojanov ,&nbsp;Liang Huang\",\"doi\":\"10.1016/j.physd.2025.134576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports on the evolution of the probability distribution in the configuration space of the two-dimensional Toda system. The distribution is characterized by singularities, which predominantly take two forms: double-cusped triangular lines and lines parallel to the equipotential line that defines the accessible region. Over time, the number of these singular patterns increases linearly. Consequently, at very large times, the singular patterns fully occupy the accessible area, resulting in a steady state probability distribution with a pronounced singular peak at the center.</div><div>Changes in the singular patterns arise solely from the system's intrinsic dynamics rather than variations in its parameters, emphasizing the system's self-organizing nature over time. These results provide a deeper understanding of the collective motion of particles in symmetric, bounded, two-dimensional conservative systems.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"473 \",\"pages\":\"Article 134576\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000557\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000557","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维Toda系统构型空间中概率分布的演化。该分布以奇点为特征,奇点主要有两种形式:双尖角三角形线和平行于定义可达区域的等势线的线。随着时间的推移,这些单一模式的数量呈线性增长。因此,在非常大的时刻,奇异模式完全占据了可达区域,从而产生一个稳定的概率分布,在中心有一个明显的奇异峰。单一模式的变化仅仅来自系统的内在动力学,而不是其参数的变化,强调了系统随时间的自组织性质。这些结果对对称、有界、二维保守系统中粒子的集体运动提供了更深入的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability distribution in the Toda system: The singular route to a steady state
This study reports on the evolution of the probability distribution in the configuration space of the two-dimensional Toda system. The distribution is characterized by singularities, which predominantly take two forms: double-cusped triangular lines and lines parallel to the equipotential line that defines the accessible region. Over time, the number of these singular patterns increases linearly. Consequently, at very large times, the singular patterns fully occupy the accessible area, resulting in a steady state probability distribution with a pronounced singular peak at the center.
Changes in the singular patterns arise solely from the system's intrinsic dynamics rather than variations in its parameters, emphasizing the system's self-organizing nature over time. These results provide a deeper understanding of the collective motion of particles in symmetric, bounded, two-dimensional conservative systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信