综述了矮猫鼬优化算法的发展趋势和未来的研究方向

Olanrewaju Lawrence Abraham , Md Asri Ngadi
{"title":"综述了矮猫鼬优化算法的发展趋势和未来的研究方向","authors":"Olanrewaju Lawrence Abraham ,&nbsp;Md Asri Ngadi","doi":"10.1016/j.dajour.2025.100551","DOIUrl":null,"url":null,"abstract":"<div><div>The Dwarf Mongoose Optimization (DMO) algorithm, inspired by the behaviors and foraging patterns of dwarf mongooses, is a recently formulated swarm-based metaheuristic method emulating the cooperative behavior of mongooses during food searches. The DMO algorithm effectively addresses various optimization challenges across multiple domains by balancing global and local searches, resulting in near-optimal solutions. Numerous DMO variants have been developed since its inception. A comprehensive survey of recent DMO research from 2022 to August 2024 is provided in this study, beginning with the natural inspiration and conceptual framework of the DMO. It then explores various modifications, hybridizations, and algorithm applications across different fields. Lastly, a meta-analysis of DMO advancements and potential directions for further research are provided.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100551"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of dwarf mongoose optimization algorithm with emerging trends and future research directions\",\"authors\":\"Olanrewaju Lawrence Abraham ,&nbsp;Md Asri Ngadi\",\"doi\":\"10.1016/j.dajour.2025.100551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Dwarf Mongoose Optimization (DMO) algorithm, inspired by the behaviors and foraging patterns of dwarf mongooses, is a recently formulated swarm-based metaheuristic method emulating the cooperative behavior of mongooses during food searches. The DMO algorithm effectively addresses various optimization challenges across multiple domains by balancing global and local searches, resulting in near-optimal solutions. Numerous DMO variants have been developed since its inception. A comprehensive survey of recent DMO research from 2022 to August 2024 is provided in this study, beginning with the natural inspiration and conceptual framework of the DMO. It then explores various modifications, hybridizations, and algorithm applications across different fields. Lastly, a meta-analysis of DMO advancements and potential directions for further research are provided.</div></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"14 \",\"pages\":\"Article 100551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662225000074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矮猫鼬优化算法(DMO)是受矮猫鼬的行为和觅食模式的启发,最近提出的一种基于群体的元启发式算法,模拟了猫鼬在食物搜索过程中的合作行为。DMO算法通过平衡全局和局部搜索,有效地解决了跨多个领域的各种优化挑战,从而得到接近最优的解决方案。许多DMO变体已经开发自成立以来。本研究从DMO的自然灵感和概念框架开始,对2022年至2024年8月DMO的最新研究进行了全面调查。然后探讨了不同领域的各种修改、杂交和算法应用。最后,对DMO的研究进展进行了meta分析,并对未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive review of dwarf mongoose optimization algorithm with emerging trends and future research directions
The Dwarf Mongoose Optimization (DMO) algorithm, inspired by the behaviors and foraging patterns of dwarf mongooses, is a recently formulated swarm-based metaheuristic method emulating the cooperative behavior of mongooses during food searches. The DMO algorithm effectively addresses various optimization challenges across multiple domains by balancing global and local searches, resulting in near-optimal solutions. Numerous DMO variants have been developed since its inception. A comprehensive survey of recent DMO research from 2022 to August 2024 is provided in this study, beginning with the natural inspiration and conceptual framework of the DMO. It then explores various modifications, hybridizations, and algorithm applications across different fields. Lastly, a meta-analysis of DMO advancements and potential directions for further research are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信