{"title":"非线性热方程的矩阵li - yu - hamilton估计","authors":"Hao-Yue Liu , Sha Yao , Xin-An Ren","doi":"10.1016/j.difgeo.2025.102236","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we are concerned with the matrix Li-Yau-Hamilton estimates for nonlinear heat equations. Firstly, we derive such an estimate on a Kähler manifold with a fixed Kähler metric. Then we consider the estimate on Kähler manifolds with Kähler metrics evolving under the rescaled Kähler-Ricci flow. Both of the estimates can be generalized to constrained cases.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102236"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Li-Yau-Hamilton estimates for nonlinear heat equations\",\"authors\":\"Hao-Yue Liu , Sha Yao , Xin-An Ren\",\"doi\":\"10.1016/j.difgeo.2025.102236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we are concerned with the matrix Li-Yau-Hamilton estimates for nonlinear heat equations. Firstly, we derive such an estimate on a Kähler manifold with a fixed Kähler metric. Then we consider the estimate on Kähler manifolds with Kähler metrics evolving under the rescaled Kähler-Ricci flow. Both of the estimates can be generalized to constrained cases.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"99 \",\"pages\":\"Article 102236\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000117\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000117","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了非线性热方程的矩阵li - you - hamilton估计。首先,我们在一个具有固定Kähler度量的Kähler流形上得到了这样的估计。然后,我们考虑了在重新标度的Kähler-Ricci流下,对具有Kähler度量演化的Kähler流形的估计。这两种估计都可以推广到约束情况。
Matrix Li-Yau-Hamilton estimates for nonlinear heat equations
In this paper we are concerned with the matrix Li-Yau-Hamilton estimates for nonlinear heat equations. Firstly, we derive such an estimate on a Kähler manifold with a fixed Kähler metric. Then we consider the estimate on Kähler manifolds with Kähler metrics evolving under the rescaled Kähler-Ricci flow. Both of the estimates can be generalized to constrained cases.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.